
AD-AL08 529 SOFTECH INC WALTHAM MA / 59
THE JOVIAL (J73) WORKBOOK. VOLUME 13. INTRODUCTION TO THE CHOL --ETC(U)
NOV al F30602-79-C-OONO

UNCLASSIFIED RADC-TR-81-333-VOL-13 Nuu muumuirnuuo

-mhmhhshhhEmhEE

'~II 1.0 1;- OII *25
liii ~ . *2 111112-2-

11111_.25 1-6 14 I~~
11111111 ___.4 _ ii .

* MICROCOPY RESOLUTION TEST CHART

N At I JP I if " N WR :I -A

PHOTOGRAPH THIS SHEET

LEVEL -5Cofrec , I iJ'
IbeJOVIAL (J723.)W.,k6.,K

0 DOCUMENT IDENTIFICATION Nov. 81

Ap S-' ATMEWN_ A 1
Appoved for public releagaDiatibuton Uiited

IA FOR DISTRIBUTION STATEMENT
ACCESSION FOR

NTIS GRAI

TIC TAB
UNANNOUNCED 0 DTIC
JUSTIFICATION ELECTE

DEC 14 1981

BYDE S DDIST7RIBUTION /D
AVAILABILITY CODES
DIST AVAIL AND/OR SPECIAL DATE ACCESSIONED

DISTRIBUTION STAMP

DATE RECEIVED IN DTIC

PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-DDA-2

FORM DOCUMENT PROCESSING SHEET
DTIC ocT 79 70A

... _g

RADC-TR4 1433, Vo1, XIII.XV (of 15)
iInterim Report
SNovember 1981

THE JOVIAL (J73) WORKBOOK

SSoffech, Inc.

IOc

APPROVL- FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

This material may be reproduced by and
for the U.S. Government pursuant to the
copyright license under DARI Clause
7-104.9(a) (1977 APR).

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, Now York 13441

*~~0 CL2 0B ,~

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-81-333, Vols XIII-XV (of 15) have been reviewed and are approved
for publication.

APPROVED: 1 k
DOUGLAS A. WHITE
Project Engineer

APPROVED:

- JOHN J. MARCINIAK, Colonel, USAF
Chief, Command and Control Division

FOR THlE COMMANDER 1 A~..

: JOHN P. HUSS

Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC

mailing list, or if the addressee is no longer employed by your organization,
please notify RADC.(COES) Griffiss AFB NY 13441. This will assist us in

maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific document requires that it be returned.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (WTen DattEntterd)l ,_

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
. REPORT NUMBER (of 15) 2. GOVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER-

RADC-TR-81-333, Vols XIII - XV
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Interim Report
THE JOVIAL (J73) WORKBOOK Dec 79 - Oct 81

6. PERFORMING OiG. REPORT NUMSER

N/A
7. AUTHOR(a) S. CONTRACT Of GRANT NUMSERIIe)

N/A
F30602-79-C-0040

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASKSofTech, Inc. AREA & WORK UNIT NUMBERS

460 Totten Pond Rd 33126F

Waltham MA 02154 20220403

,,. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

November 1981
Rome Air Development Center (ISIS) 13. NUMBER OF PAGES
Griffiss AFB NY 13441 113

14. MONITORING AGENCY NAME & AODRESS(l different fom Controlling Office) IS. SECURITY CLASS. (of thA report)

UNCLASSIFIED
Same

iSa. OECLASSI FICATION/DOWNGRAOING
SCHEDULE

N/AI I. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the ab etrct entered in Block 20. if different fiom Report)

Same

IS. SUPPLEMENTARY NOTES

RADC Project Engineer: Douglas A. White (ISIS)

1. KEY WORDS (Continue on revere. side it necessary d identify by block number)

JOVIAL (J73)
MIL-STD-1589A
Video Course
Higher Order Language

20. ABSTRACT (Continue en revere aide It necessa end identify by block nmber)

The JOVIAL (J73) Workbook is only one portion of a self-instructional
JOVIAL (J73) training course. In addition to the programmed-learning

primer/workbooks, are video taped lectures. The workbooks are formatted
to consist of fifteen (15) segments bound in three (3) volumes covering
each particular language capability. A video tape lectrue was prepared
for each workbook segment. This course is taught in two parts. Part I
contains twelve (12) segments in Volumes I and II of the workbook; Part

DD, I iM, 1473 EDITION OP 1 NOV 5 IS OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE ("Weni Deli Enld WOr

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGZOh O Daa Efe e.E

II, Volume III contains three (3) segments. There is a brief
explanatory introduction at the beginning of the course. Each of the
individual segments deals with a specific feature of the JOVIAL language.
The video tapes act as an overview to outline particular points that are
followed up in the written workbooks. Each tape runs a maximum of 25
minutes and contains an average of 15 graphic each.

UNCLASSIFIED

SECURITY CLASSIVICATIOS OF "'" PAatfWhA" ONO 6"t.d)

-z ___ __ __ m - ~ __

THE JOVIAL (J73) WORKBOOK

VOLUME 13

INTRODUCTION TO THE
CHOL EXTENSIONS

1081-1

April 1981

This material may be reproduced by
and for the US Government pursuant
to the copyright license under DAR
Clause 7-104.9(a) (1977 APR).

Submitted to

Department of the Air Force
Rome Air Development Center

ISIS
Griffiss Air Force Base, NY 13441

Prepared by

SofTech, Inc.
460 Totten Pond Road

Waltham, MA 02154

OCopyright, SofTech, Inc., 1981

PREFACE

Workbook 13 is intended for use with Tape 13 of the JOVIAL 0i73)
Video Course. Its purpose is to elaborate upon and reinforce concepts
and language rules introduced in the videotape.

The JOVIAL (J731C) programming language takes the (JOVIAL (J73)
language and extends it with features designed primarily for communications
programming. These extensions are introduced in this workbook. Specific
attention is given to items, statements, table declarations, subroutines,
built-in functions and directives. Exercises are also provided where
appropriate.

10 1-

-17

TABLE OF CONTENTS

Section Page

SYNTAX 13:iv

1 ITEMS 13:1-1

2 EXECUTABLE STATEMENTS 13:2-1

3 TABLES 13:3-1

4 SUBROUTINES 13:4-1

5 BUILT-IN FUNCTIONS 13:5-1

6 DIRECTIVES 13:6-1

1081-1 13:111 W50FJT1 ..

SYNTAX

The syntax conventions used in the JOVIAL (J73) Video Course

and workbook are as follows:

Syntax Meaning Sample Expansions

[some-feature] Brackets indicate an some-feature
optional feature. OR

nothing

{one I other} Braces with a vertical one
bar indicate disjunction- OR
a choice between other
alternatives.

his-one Braces with each feature this-one

that-one) on separate lines indicate OR
disjunction - a choice that-one
between alternatives.

letter ... The sequence '...' letter
indicates one or more letter letter

repetitions of a feature. letter letter letter

(letter),... The sequence ".. (letter)
following a comma (or a (letter) (letter)
colon) indicates one or (letter) (letter) (letter)
more repetitions of the
feature separated by
commas (or colons).

this-one's Syntax symbols may be this-one + (another)
'Xthat-oneil combined, that-one + (another)

+ another + (another)

1081-1 13:iv Spof &L.H

1T

SECT ION 1

ITEMS

I.'T C3

ITEMS

An item is a scalar variable or constant. All items must be declared

before they can be used anywhere in a program. The general syntax for

an item-declaration in JOVIAL (J73) is:

[CONSTANT] ITEM name .ietype-name) [item-preset];

The type-descriptions shown so far are:

U [integer-size]

S [integer-size]

F [precision]

A scale [,fraction]

B [bit-size]

C [character-size]
name

STATUS [size] ([status-index] V (letter 3) ...)
reserved-word

P [type-name]

An item-declaration specifies that an item-name designates a variable or

a constant with a specified type-class and attributes. (Workbooks I, 2

and 5 should be reviewed for details.)

This section discusses the value range specification available in

JOVIAL (J731C), as well as the ALPHA status type, character formulae, sub-

routine items and some changes in type matching rules.

VALUE RANGE SPECIFICATION

The value range specification restricts the values which an item

may assume. A value-range may be given as part of the type-description

for numeric types. Value-range is of the form:

lower-bound: upper-bound

1081-1 13:1-1 Ub

.-----

Lower-bound and upper-bound are formulae of the appropriate type, and

must be known at compile-time. Lower bound must be less than or equal

to upper bound. The comma before the value range is used if and only

if both a size attribute and a value-range are specified.

The errors signalled are as follows:

• Value of item-preset out of range of value

* Value of source in an assignment out of value-range of target

* Value of formulae out of range of conversion operator or scale

* Value of source in an assignment out of range implied by
integer-size or scale

Value Range Specification: Examples

Declaration Meaning

ITEM INDEX U 5, 1:25; INDEX designates an unsigned 5-bit
integer variable that can take on
values in the range 1 through 25.

ITEM TOLERANCE S -1000:1000; TOLERANCE designates a signed
integer variable that can assume
values in the range -1000 through
+1000. It will be allocated at least
ten bits for the signed integer
value.

ITEM ERROR F, .00001:.001; ERROR designates a floating variable
with default precision. It can assume
values in the range .00001 through
.001.

ITEM SPEED A 10, 3, 1.:1000.; SPEED designates a fixed variable
with scale 10 and fraction 3 that
can assume values in the range 1
through 1000.

ITEM THICKNESS A 7, 5.5:102.125; THICKNESS designates a fixed variable
with scale 7 and fraction FIXED-
PRECISION - 7 that can assume values
in the range 5.5 through 102.125.

1081-1 13:1-2

ALPHA STATUS TYPE

As mentioned in Workbook 2, a status item is an item whose value

range is a specified list of symbolic names called status-constants. A

status-constant is a symbolic constant that has an ordering relative to

the other status-constants in the list. A status item provides a way

enumerate all possible values for that item in a mnemonic way.

In JOVIAL (J73/C) there is a built-in status type called ALPHA

that corresponds to the bit patterns represented by the character set

of a machine. The ALPHA status-constants are represented in the

following way:

V(NUL), V(BEL) non-printing character

V($A), V($J) lower-case character

V(A), V(J) upper-case character

V(1), V(9) numerals with character-set bit
representation

ALPHA has default representation. A complete list of ALPHA

status constants can be found in Figure 1-1.

Status- Value in Status- Value in
Constant Octal Description Constant Octal Description

V(NUL) 0 null V(DC3) 23 device control 3
V(SOM) 1 start of message V(DC4) 24 device control 4
V(SOT) 2 start of text V(NACK) 25 negative acknowledge
V(EOT) 3 end of text V(IDL) 26 synchronous idle
V(EOTR) 4 end of trans. V(EOB) 27 end of block
V(ENQ) 5 enquiry V(CAN) 30 cancel
V(ACK) 6 acknowledge V(EOMD) 31 end of medium
V(BEL) 7 bell V(SUB) 32 substitute
V(BS) 10 backspace V(ESC) 33 escape
V(HT) 11 horizontal tab V(FS) 34 file separator
V(LF) 12 line feed V(GS) 35 group separator
V(VT) 13 vertical tab V(RS) 36 record separatorV(FF) 14q form feed V(US) 37 unit separator
V(CR) 15 carriage return V(BL) 40 blank
V(SO) 16 shift out V(DEL) 177 delete
V(SI) 17 shift In V($A) to 141- lowercase
V(DLE) 20 data link escape V(SZ) 172 alphabet
V(DC1) 21 device control 1 V(prntg ASCII others
(VDC2) 22 device control 2 char) code

Figure 1-1. Status Constants in ALPHA

1081-1 13:1-3

CHARACTER FORMULAE

A character formula represents a value whose type class is character.

Its size is the number of bytes comprising its value. In JOVIAL (J73/C),

a character formula known at compile-time may use the concatenation

operator (11). The type of the result is Cn where n is the sum of the

sizes of the character strings.

Example

ITEM NAME C9 = 'JOHN'//'SMITH';

The ALPHA status type discussed above is very useful in this

context, as in the following example:

ITEM NAME C 10 = 'JOHN'//V(CR) I'SMITH';

The status-constant V(CR) - carriage return - is implicitly converted to

a C 1 in this example.

SUBROUTINE ITEMS

A subroutine item is used to indicate a function or procedure, A

subroutine item may be assigned to reference a specific function or pro-

cedure. The subroutine item-name may then be used to invoke the sub-

routine that is its current value.

The form of a subroutine type-description is:

PROC [use-attribute] [(formal-list)] type-description]

parameter-declaration

The square brackets indicate that use-attribute, the parenthesized

formal-list and type-description are all optional. If a subroutine type-

description contains a type-description, the name being declared designates

a function item. Otherwise, it designates a procedure item.

Parameter-declaration is a declaration. If only one parameter is

used, the parameter-declaration is a simple declaration. If more than

one parameter is used, the parameter-declaration is compound. If no

parameters are used, the parameter-declaration must be a null-declaration.

1081-1 13:1-4

Some examples of subroutine item-declarations are:

Declaration Meaning

ITEM FLOOR PROC (ARG) S; FLOOR designates a function item
ITEM ARG S;; with one argument, which is a signed

integer. The return value of FLOOR
is a signed integer. If it is declared
within a subroutine, it has static
allocation. Otherwise, it has auto-
matic allocation. Its initial value
is unspecified.

ITEM CLEAR PROC;;; CLEAR is a procedure item with no
parameters. Its initial value is
unspecified.

ITEM MULT PROC (M1, MS); MULT is a procedure item with two
BEGIN table parameters.
TABLE M1 (100);

ITEM MULl U;
TABLE M2 (100);

ITEM MUL2 U;
END

A subroutine item may be used almost anywhere a simple item may

be used. However, a subroutine item must not be used as an input or

output parameter or as the type of a function return value.

SUBROUTINE VARIABLES

A subroutine-item may receive an assignment and may be invoked.

Example

ITEM SORT PROC(: LIST);

TABLE LIST(*);

ITEM VALUE U;

SORT = FASTSORT;

SORT (: DATA);

1081-1 13:1-5 3O , H.

.-- -.. III -II II _ _ "

PROC FASTSORT(: LIST);

subroutine-definition

PROC SLOWSORT(: LIST);

subroutine-definition

In this example, item SORT is of type subroutine -- procedure in this case

The procedure-call -statement invokes the procedure FASTSORT.

SUBSCRIPTED SUBROUTINE VARIABLES

A subroutine item, like any other item may be subscripted. The

form is:

subroutine-item-name (subscript-list) (actual-list)

The subscripted subroutine item may be used almost anywhere a simple

item may be used.

Example

TABLE EMPLOYEES(I : NUM'EMP);

BEGIN

ITEM NAME C 20;

ITEM SOC'SEC'NO C 9;

ITEM PAY'KIND STATUS (V(SALARIED), V(HOURLY));

ITEM PAYCHECK F;

ITEM COMPUTERPAY PROC (WORK'HOURS'TH IS'MONTH) F;

ITEM WORK'HOURS'THIS'MONTH U;

END

1081-1 13:1-6

- ' . . .- "-. I "... ... x - - a

WORK'HOURS'THI SIMON TH = 160;

FOR I :1 TO NUM'EMP;

BEGIN

IF PAY'KIND(I) = V(SALARIED);

COMPUTEPAY(I = SALARY'PLUS'BONUS;

ELSE

COMPUTEPAY(I) = WAGES'PLUS'OVERTIME;

PAYCHECK (I) = COMPUTEPAY (I)(WORK'HOURSITH lS'MONTH);

END

PROC SALARY'PLUS'BONUS(HOURS) F;

subroutine-body

PROC WAGES'PLUS'OVERT IME (HOURS) F;

subroutine-body

CONSTANT AND TYPED SUBROUTINE ITEMS

A subroutine item may be declared to be a constant or may be

declared with an item-type-name.

Examples

CONSTANT ITEM SALARY PROC(EMPTAB) F;

TABLE EMPTAB;

BEGIN

ITEM PERSON C 20;

ITEM PAY F;

END = PAY 'WEEK (EMPTAB);

1081-1 13:1-7 &DO-

TYPE WAGES PROC(EMPTAB) F;

TABLE EMPTAB;

BEGIN

ITEM PERSON C 20;

ITEM PAY F;

END

ITEM PAYCHECK WAGES;

ITEM EXTRAPAY WAGES = PAY'SUN(EMPTAB);

(Both PAY'WEEK and PAY'SUN both have their function-definitions

somewhere else in the program.)

PRESETS

Like all other items, a subroutine item may be preset. The form is:

ITEM name type-declaration item-preset;

Examples

ITEM SUBR1 PROC(IN); ITEM IN U ; = FIGURE1(WAGES);

The first example shows SUBR1, a subroutine item, with one para-
meter, IN, its declaration, and an item-preset.

ITEM SUBR2 PROC ; ; = FIGURE2;

The second example shows SUBR2, a subroutine item, with no para-

meters but with an item-preset. (A null parameter-declaration must be

given.)

1081-1 13:1-8

TYPE MATCHING AND CONVERSION

Because of the addition of value range specifications and subroutine

items, there are some additional rules for type matching and conversion

in J73/C. These are summarized below.

INTEGER TYPES (SIGNED AND UNSIGNED)

Type Equivalence: Two integer types are equivalent
if they are both S or U and if their
(explicit or default) size attributes
and subrange attributes are equal.

Implicit Conversions: An integer type will be implicitly
converted to any other integer type,
provided their subranges are not
disjoint.r Explicit Conversions: Unchanged.

FLOATING POINT TYPES

Type Equivalence: Two floating types are equivalent
if their (explicit or default) pre-
cision attributes and subrange
attributes are equal.

Implicit Conversions: A floating type will be implicitly
converted to a floating type of the
same or greater precision regardless
of the round-or-truncate attribute,
provided their subranges are not
disjoint.

Ex plici't Conversions: Unchanged.

FIXED POINT TYPES

Type Equivalence: Two fixed point types are equivalent
if their scale attributes are equal
and their (explicit or default) fraction
attributes and subrange attributes
are equal.

1081-1 13:1-9

Implicit Conversions: A fixed point type will be implicitly
converted to another fixed point type
if the scale and fraction attributes
of the target type are both at least
as large of those of the source type
and if their subranges are not disjoint.

Explicit Conversions: Unchanged.

STATUS TYPES

Conversion rules unchanged.

BIT TYPES

Conversion rules unchanged.

CHARACTER TYPES

Conversion rules unchanged.

SUBROUTINE TYPE

Type Equivalence: Two subroutine types are equivalent
if they are declared with the same
subroutine-attributes, their para-
meters agree in number, order, type,
and binding, and their result-types
(if any) are equivalent. Note that
the names of the parameters do not
have to be the same.

Implicit Conversions: No implicit conversions are performed.

Explicit Conversions: No explicit conversions are performed.

1081-1 13:1-10

SECTION 2

k'XECUTABLE STATEMENTS

I - _

EXECUTABLE STATEMENTS

Executable statements in JOVIAL (J73) were discussed in Workbook

3. JOVIAL (J73/C) provides extended features for loop control, loop

exiting, the deallocation of heap storage, and the protection of data

shared by concurrent processes.

LOOP STATEMENTS: THE TO-PHRASE

J73/C allows the programmer to specify a to-clause to further con-

trol the execution of a loop. The general syntax is:

FOR loop-control : initial-value [BY increment]

[TO limit] [WHILE condition];

A to-clause (or a while-phrase) controls the number of times the

statement in the for-loop is to be executed. In a to-clause, limit is a

numeric or status formula. If limit is a floating or fixed formula, a by-

clause must be given. If limit is an integer formula and a by-clause is

not present, loop-control is incremented by I. If limit is a status formula,

loop-control is incremented by taking the successor of the current status

value. (In a while-phrase, condition is a Boolean formula.)

The execution of the incremented for-loop is as follows:

1. Evaluate initial-value and assign its value to loop-control.
If a to-clause is given, evaluate limit and increment (if
present).

2. If a to-clause is not given, continue to step 3. If a to-
clause is given, compare the value of loop-control with the
value of limit. Execution continues if:

loop-control < limit and increment is positive.

loop-control > limit and increment is negative.

3. Evaluate condition if the while-clause (if present). If the
value of condition is TRUE, continue to step 4. If the value
of the condition is FALSE, terminate the for-loop.

1081-1 13:2-1 &IC3 4

4. Execute the controlled-statement.

5. Evaluate increment and add it to loop-control. Return to
step 2.

EXIT STATEMENT: THE EXIT LABEL

An exit-statement is used to exit a loop at the point within the loop

where the exit-statement is executed.

An exit-statement exits from the immediately enclosing loop if no

exit-label is specified in the exit-statement, or from the loop labelled by

the exit-label in the exit statement. The form of the exit-statement is:

EXIT [exit-label I;

The square brackets indicate that exit-label is optional.

Exit-label must be a statement-name used as a label on an enclosing

loop. If exit-label is given, the exit is from the loop labelled with the

statement-name. If exit-label is not given, the exit is from the immediately

enclosing loop-statement.

The effect of an exit-statement is the same as the effect of a goto-

statement that transfers control out of the controlled-statement.

Example

The following for-loop may be written to sum the items of a table

with two dimensions and to terminate the summation process if the sum

exceeds a specified threshold. Since the table has two dimensions, the

summation process requires a nested for-loop. A labelled exit-statement

is used to terminate the execution of both for-loops:

OUTERLOOP: FOR 1 : 1 to 100;

INNERLOOP: FOR J : 1 TO 100;

BEGIN

SUM = SUM + COUNT (I, J);

IF SUM > IMAX;

EXIT OUTERLOOP;

1081-1 13:2-2

IF SUM > JMAX;

EXIT;

END

UPDATE STATEMENT

The update-statement is used to control access to data that is shared

by concurrent processes. Data that is shared in this way must have

PROTECTED allocation specified in its declaration and may only be accessed

within an update-statement.

The form of an update-statement is:

UPDATE

protection-list

statement ...

(condition-handler]

[label ... I END

The protection-list is a sequence of one or more data names,
separated by commas. It names the protected data that is to be referenced

in the update-statement.

For each data name in the protection-list, a lock routine is called at

the beginning of the update-statement and an unlock routine at the end
of the update-statement. The locking of the data prevents its being

accessed by another process.

Given the following table-declaration:

TABLE INTEREST PROTECTED (9);

ITEM RATE F;

If one process periodically changes the interest rates and other proces-

ses use the interest rates, the process that changes the rates may use

an update-statement, as follows:

1081-1 13:2-3 MW &9O

UPDATE INTEREST

FOR I : 0 TO 9;

RATE (I) = FACTOR (1 + RATE (I));

END

The processes that use the interest rates may also use update-statements

to access them. For example:

UPDATE INTEREST

CASE PERIOD;

BEGIN

(20): MORTGAGERATE = RATE (1);

(25): MORTGAGERATE = RATE (2);

(30): MORTGAGERATE = RATE (3);

END

END

In this way, a process is ensured that the data being accessed is internally

consistent.

If an update-statement is to be executed when the data to be

accessed is locked by another process, the execution waits until the data

is unlocked. Careless use of the update-statement can result in a dead-

locked program.

FREE PROCEDURE CALL STATEMENT

The FREE procedure returns storage referenced by a pointer-

formula to the heap. The FREE procedure is called as follows:

FREE (pointer-formula);

The pointer-formula must be a typed pointer and must point to an object

that was allocated by the NEW function (discussed below).

1081-1 13:2-4

SECTION 3

TABLES

TABLES

JOVIAL (J73) table declarations were discussed in Workbook 4.

J73/C provides three extensions to J73 - table nesting, case variants and

the use of tables in relational expressions.

NESTED TABLES

A nested table-declaration is a table-declaration given as a table-

option within another table-declaration.

The following table-declaration contains a nested table-declaration:

TABLE TEAM;

BEGIN

F ITEM NAME C 15;

ITEM CITY C 15;

TABLE RECORD;

BEGIN

ITEM WINS U;

ITEM LOSSES U;

END

ITEM OWNER C 15;

END

1081-1 13:3-1

... ... - --_- - --.-- .. - "-.. .- -"- - -

This table may be diagrammed as follows:

TEAM

NAMEI

CITYI
RECORD

WINSI
LOSSES

I
OWNER

Table TEAM has one entry. This entry contains the item NAME, the

item CITY, the table RECORD, and the item OWNER.

The following is another example of a nested table-declaration:

TABLE Xl (1 : 3);

BEGIN

TABLE X2 (4);

BEGIN

TABLE X3 (1, 1);

ITEM AA U;

1081-1 13:3-2

TABLE Y3 (2);

ITEM BB U;

ITEM QQ F;

END

ITEM ZZ B 12;

END

The table X1 may be diagrammed as follows:

X1 (3)
X 1(2)

X101)

X2(4)

X2(0) I

X3(1, 1)

X3(0,O0)

Y3(2)

Y3(0)

I BB
_ _ _ _ _ _ _ _

QQ

zz

1081- 13:3-3 SOFT.I.

The table Xl has three entries. Each entry contains a nested table X2

and an item ZZ. The nested table X2 has five entries. Each entry contains

a nested table X3, a nested table Y3, and an item QQ. The nested table

X3 has two dimensions and four entries, each containing an item AA. The

nested table Y3 has one dimension and three entries, each containing an

item BB.

As a final example, consider table DETAIL'ID:

TABLE DETAIL'ID

BEGIN

ITEM NAME C 20;

ITEM SOC'SEC'NO C 9;

ITEM AGE U 7;

TABLE EDUCATION;

BEGIN

ITEM GRAD'HS B;

ITEM BACH'DEG B;

ITEM MASTR'DEG B;

END

END

NOTES: The table DETAIL'ID has one entry. That entry

is composed of three items (NAME, SOC'SEC'NO, and AGE)

and one table (EDUCA TION). The table called EDUCA TION

has one entry. That entry is composed of three items

(GRADIHS, BACH'DEG, and MASTR'DEG).

1081-1 13:3-4

..... - - --- -- : _. j ., . .. - -

DETAIL'ID could be diagrammed as follows:

TABLE

EDUCATION

t I I
SII

NAME {SOCSEC'NO1 AGE I GRAD'HS IBACH'DEG IMASTR'DEGI I I
S I I

A dimensioned table may include a nested table.

Example

TABLE DETAIL'ID (I : 3, 1 : 5);

BEGIN

ITEM NAME C 20;

ITEM SOCISEC'NO C 9;

ITEM AGE U 7;

TABLE EDUCATION

BEGIN

ITEM GRADHS B;

ITEM BACH'DEG B;

ITEM MASTER'DEG B;

END

END

1081-1 13:3-5 n 1-' u i

The table DETAIL'ID is a two-dimensional table, each entry has three

items and a table with three items. DETAIL'ID may be diagrammed as

follows:

I TABLE EDUL;A lION entry
NAME SSN AGE GROHS BACH I MASTR nI I I (1,1)

NAEI|"I TABLE EIIIUN 1T A L E D , C It e n t r y
NAME SSN I AGE II GROHS BACH MASTR (1,2)

II I | I

I TABLE EDUCATION "
NAME I SSN i AGE 1 1 GR'HS I BACH I MASTR entry

_ _I I TAI EdCATION (1)

NAME , SSN I AGE I GROHS BACH MASTR

i I_ _ _ _ _ _ ,

1 !,TABLE E JUAIIUN I

NAME :SSN AGE GR'HS !BACH entry, , ,I , , (3, S)
t _ _ _ 1

As another example, consider table LIBRARY:

TABLE LIBRARY(1 : 100);

BEGIN

ITEM AUTHOR C 20;

TABLE BOOKS(1 : 3);

BEGIN

ITEM TITLE C 10;

ITEM DATE C 8;

ITEM PAGES U;

END

ITEM SHELF C 3;

ITEM USED B

END

1081-1 13:3-6

I 6 - A-

The table LIBRARY is a one-dimensional table, each entry has three

items and another one-dimensional table with three items. LIBRARY can

be diagrammed as follows:

TABLE BOLK I
I TITLE DATE IPAGES (1)1

AUTHOR TITLE I DATE TPAGES (2)1 SHELF I USED entry

TITLE DATE PAGES (3))I I

_ TABLE BOOKSII
TITLE I DATE PAGES 1)1AUTOR I P I entry

AUTHOR TITLE DATE I PAGES 2)1 SHELF I USED (100)
TITLE I DATE IPAGES 3)1 (

i Ir

NESTED TABLE PRESETS

A table-preset may appear on a table-heading provided it does not

preset any items in a nested table. If any items in a nested table are to

be preset, the preset must go on the nested table or the items within the

nested table. The following examples preset the items NAME, GRAD'HS,

and BACHIDEG.

TABLE DETAIL'ID

BEGIN

ITEM NAME C 20 = 'J SMITH';

ITEM SOC'SEC'NO C 9;

ITEM AGE U 7;

TABLE EDUCATION;

1081-1 13:3-7 SOFJ3 9 .g

BEGIN

ITEM GRADIHS B =TRUE;

ITEM BACHIDEG B = TRUE;

ITEM MASTERIDEG B;

END

END

TABLE DETAILID;

BEGIN

ITEM NAME C 20 = J SMITH';

ITEM SOC'SEC'NO C 9;

ITEM AGE U 7;

TABLE EDUCATION = 2 (TRUE);

BEGIN

ITEM GRAD'HS B;

ITEM BACH'DEG B;

ITEM MASTR'DEG B;

END

END

Dimensioned tables nested within other dimensioned tables may be preset

as well. Consider the following example:

TABLE LIBRARY(1 : 100);

BEGIN

ITEM AUTHOR C 20 = 20(' '),2('SMITHI), 'JONES';

TABLE BOOKS(1 : 3);

BEGIN

ITEM TITLE C 10 = 60(' 1), "1VOL1', 1VOL2'. "VOLT',
'VOL41, 'VOL5'. IVOL6', 'EARTH';

1081-1 13:3-8

ITEM DATE C 8;

ITEM PAGES U = 60(0), 6(210), 432;

END

ITEM SHELF C 3 = 20(' '), 3(17HI');

ITEM USED B;

END

The table-preset given above skips the first twenty AUTHORS and

presets the next two to SMITH and the following AUTHOR to JONES. By

skipping sixty titles (twenty AUTHORs times three BOOKS each), AUTHOR

SMITH has six books with TITLEs and PAGES preset and AUTHOR JONES

has only one book with TITLE preset to EARTH and PAGES preset to 432.

By skipping twenty of item SHELF, SMITH and JONES both have their

books on SHELF 7HI.

NESTED TABLES: PACKING AND STRUCTURE

The packing and structure attributes discussed in Workbook 9 also

apply to nested tables. Consider the following examples:

1. TABLE SCHEDULE(1 : 4, 1 : 5) D;

BEGIN

ITEM STUD'ID U 4;

ITEM SEX U 1;

TABLE COURSES (1 7);

BEGIN

ITEM COURSENO U4;

ITEM AUDIT B;

ITEM HONORS B;

END

END

1081-1 13:3-9 rlIpc q

If BITSINWORD = 48, the above table may be laid out in the following way:

S it 0 56 11 ,12 17,18 2 2 . 29 30 3S 36 12 7

CS'NO A
1) (M 7)

2. TABLE SCHEDULE(I 4, 1 5) D;

BEGIN

ITEM STUD'ID U 4;

ITEM SEX U 1;

TABLE COURSES (1 : 7) T;

BEGIN

ITEM COURSENO U 4;

ITEM AUDIT B;

ITEM HONORS B;

END

END

If BITSINWORD = 48, the above table may be laid out in the following way:

Bt 0 5 6 11 12 17. 23 28 29.30 35.36 4 1 2 47
ST' ICSNO A HCCS'NO JICSONO HH Is CNo A HI CSNO iAH

1)Il (1)) (2) W32J (3) (J(3) (4) (81 (S) 5 ' (6) 7) M

SPECIFIED NESTED TABLES

A nested table may be a specified table and appear within another

specified table.

1081-1 13:3-10

• , -_ -. "

Example

TABLE SCHEDULE (1 4~, 1 : 5) W 9;

BEGIN

ITEM STUD'ID U 4 POS(*, 0);

ITEM SEX U 1 PQ5(*, 8);

TABLE COURSES (1 :7) W 1;

BEGIN

ITEM COURSENO U 4 P05(0, 0);

ITEM AUDIT B POS(8, 0);

ITEM HONORS B POS(15, 0);

END

END

If BITSINWORD = 16, the above table may be laid out in the following way:

0 15

STUD'ID(1, 1)

CSNO A H
(1) (1) (1)

CSNO A H
(2) (2) (2)

CSNO j~ , A (7

(_7)() 7

SEX(1, 1)

1081-1 13:3-11 S Fk I.

CASE-VARIANT

A table sometimes involves a common part and a special part, whose

form depends on information in the common part.

To get this form of a table, a case-variant is given as the last item

in an entry-description.

Example

TABLE INFO;

BEGIN

ITEM NAME C 20;

ITEM AGE U 7;

ITEM GRAD'HS B;

CASE GRADIHS

j BEGIN

(TRUE) ITEM GRAD'U B;

ITEM MASTERS B;

ITEM PHD B;

(FALSE) : ITEM LAST'GRADE U, 9 11;

END

END

A case-variant has the form:

CASE variant selector

BEGIN

[default-variant]

variant

END

1081-1 13:3-12

- ., " -- _- --.. . .-

The form of a variant is:

(case-index) declaration ...

At any given time, only one variant is present. Which variant is present

depends on the value of variant-selector. Enough space is allocated to hold

the largest variant.

Reference to a component of a variant that is not

present causes a run-time error.

The value of the variant-selector indicates which variant is present.
Variant-selector must be an item declared in an entry-description in the

common part of the table that contains the case-variant. It can be of type

integer, bit, character, or status.

The case-indices indicate the entry that is present for a particular
value of the variant-selector. The types of the case-indices must be

equivalent or implicitly convertible to the type of the variant-selector.

A case-index may be a single value, a pair of bounds, or any combination

of the two separated by commas. The form of a pair of bounds is:

first-case : last-case

A pair of bounds may be given only for type integer or status.

If the value of variant-selector does not match a case-index, the

default-variant, if one is given, is selected. The form of the default-
variant is:

DEFAULT) : declaration ...

Example

TABLE EDUC;

BEGIN

ITEM NAME C 20;

ITEM GRADE U, 1 : 12;

1081-1 13: 3-13 SO'eC H

L = , __ .-

CASE GRADE

BEGIN

(DEFAULT):

(7 : 9): ITEM SCHOOL C 5;

ITEM VOLUNTEER B;

(5, 6): ITEM VOLUNTEER B;

(10 : 12): ITEM SCHOOL C 5;

ITEM WORKING B;

ITEM GRAD'EARLY B;

END

END

Table EDUC could be diagrammed as follows:

(DEFAULT)

'Ii____ I----------------

1(7 : 9) I
NAME GRADE SCHOOL I VOLUNTEER I

(5 6)
VOLUNTEER I

(10 :12) I
SCHOOL WORKING I GRAD'EARLY

NOTE: The variant-options all occupy the same place in

memory. If the value of the case-selector is changed, the

programmer may make no assumptions as to the value in

any of the case-options.

1081-1 13:3-14

7 " 0 ,

VARIANT ENTRIES IN DIMENSIONED TABLES

A dimensioned table may include a variant-option.

Example

TABLE INFO (1 : 10);

BEGIN

ITEM NAME C 20;

ITEM MARRIED B;

CASE MARRIED

BEGIN

(FA LSE):

(TRUE): ITEM NO'OF'KIDS U, 0 :20;

END

END

This table may be diagrammed as follows:

!(FALSE)

NAME(1) MARRIED(1) :TU

,NO'OF'K IDS(1)

1081-1 13: 3-15 O 1 I.

CASE-VARIANT PRESETS

A table-preset may be used to preset the items in a table with a

variant-option. Using table EDUC, declared above, the preset could be

given as a part of the table heading --

TABLE EDUC = 'IJ SMITH', 8, 'LMJHS', TRUE;

The second preset value, GRADE = 8, makes the items SCHOOL

and VOLUNTEER known and allows them to be preset. If the preset on

GRADE had been missing, any attempt to preset any iteras in the case-

variant would cause an error to be signalled.

Presets may also be given for variant entries which appear in

dimensioned tables. For example:

TABLE INFO (1 : 10)

BEGIN

ITEM NAME C 20;

ITEM MARRIED B = 5(TRUE, FALSE);

CASE MARRIED

BEGIN

(FALSE):

(TRUE): ITEM NO'OF'KIDS U, 0 : 20 =
(1, 3, 2, 6)

END

END

The table-preset given above presets the odd indexed items MARRIED to

TRUE. The corresponding NO'OF'KIDS are preset to 1, 3, 2, 6.

NO'OF'KIDS(9) is not preset.

1081-1 13:3-16

-AA
e4

VARIANT-OPTIONS: PACKING AND STRUCTURE

The packing and structure attributes discussed in Workbook 9
may also be used for variant-options. Consider the following examples:

1. TABLE SAMPLE (1 : 10) D;

BEGIN

ITEM TEST U 3;

ITEM GUESS U 4;

ITEM RESULT B;

CASE RESULT

BEGIN

(TRUE) : ITEM TCOUNT U 5;

ITEM AVE U 3;

(FALSE) : ITEM FCOUNT U 4;

END

END

If BITSINWORD = 18, the above table may be laid out in the following

manner:

Bit 0 2 3 6 7 8 15 1
(TRUE) TcOUNT(I) AVE(l)

TEST(1) GUESS(1) R (FALSE)
(1) FCOUNT(1)L.N

02 3 6 7 8 . 15 17
jJ(TRUE) V(0

TEST(10) GUESS(o10) R (TRU)jiOU V) E (11,)

(FALSE)

1081-1 13:3-17 5 0 m H

2. TABLE SAMPLE(1 : 10) PARALLEL;

BEGIN

ITEM TEST U 3;

ITEM GUESS U 4;

ITEM RESULT B;

CASE RESULT

BEGIN

(TRUE) ITEM TCOUNT U 5;

ITEM AVE U 3;

(FALSE) ITEM FCOUNT U 4;

END

END

Table SAMPLE could be diagrammed as follows:

SAMPLESTEST(I) I---

TEST(10)

GUESS(1)

RESULT(1)

RESULT(10)

(T) TCOUNT(1)

(F) FCOUNT(1)

(T) TCOUNT(IO)

(F) FCOUNT(I)

(T) AVE(I) _
(F)

Tj&NE(0V]

1081-1 13:3-18

VAR IANT-OPT IONS: SPECIFIED TABLES

Variant-options may also appear in specified tables.

Example

TABLE SAMPLE(1: 3) W 2;

BEGIN

ITEM TEST U 3 POS(O, 0);

ITEM GUESS U 4 POS(6, 0);

ITEM RESULT B POS(15, 0);

CASE RESULT

BEGIN

(TRUE) ITEM TCOUNT U 5 POSfO, 1);

ITEM AVE U 3 POS(5, 1);

(FALSE) : ITEM FCOUNT U 4 POS(12, 1);

END

END

If BITSINWORD = 16, the above table may be laid out in the following way:

Bit 0 3 6 9 is

[TEST(1) GUESO 1110) word 0
[(TRUE) (TRUE)FAS)wr1

I, TCOUNT 11 AV1) 1FCOUNT(I)

fTEST(3) JjGUESS(3) I R(3) word 0

(TRUE) (TRUE) (FALSE) wr
TCOUNT(3) AVE(3) 7 FCOUNT(3) wr

1081-1 13:3-19 X 160.

DATA REFERENCES

Nested Tables: A reference to an item in a nested table must be

fully qualified; all tables enclosing that item must be given beginning with

the outer-most table. Given the following table declaration:

TABLE CREDIT;

BEGIN

ITEM NEW'BOOK C 20;

ITEM AUTHOR C 20;

ITEM DATE C 8;

TABLE FIRST'BOOK;

BEGIN

ITEM DATE C 8;

TABLE OTHER'INFO;

BEGIN

ITEM PUBLISHER C 20;

ITEM ILLUS B;

END

END

END

The following data references are correct:

CREDIT. DATE

CREDIT. FIRST'BOOK. DATE

NEW BOOK

CREDIT. FIRST'BOOK.OTHER'INFO. ILLUS

These fully qualified items may be used anywhere a simple item name may

be used.

1081-1 13:3-20

The form of a data reference to an item in a nested table is:

qualification name (subscript-list)

If a dimensioned table is nested within another dimensioned table,

the outer most subscripts are given first, then the next ones in, etc.

For example, given the declaration of table LIBRARY,

TABLE LIBRARY(1 : 100);

BEG IN

ITEM AUTHOR C 20 = 20(' '),2('SMITH'), 'JONES';

TABLE BOOKS(1 : 3);

BEGIN

ITEM TITLE C 10 = 60(' '), 'VOLl', 'VOL2', 'VOL3',
'VOL4', 'VOL5', 'VOL6', 'EARTH';

ITEM DATE C 8;

ITEM PAGES U = 60(0), 6(210), 432;

END

ITEM SHELF C 3 = 20(' '), 3('7HI');

ITEM USED B;

END

The following are correct data references:

AUTHOR (21)

LIBRARY. BOOKS.TITLE(21,2)

LI B RARY. BOOKS. PAGES(23, 1)

SHELF(22)

These data references may be used anywhere a simple item name may be

used.

1081-1 13:3-21

As a further example, consider table DETAIL'ID:

TABLE DETAIL'ID (1 : 3, 1 : 5);

BEGIN

ITEM NAME C 20;

ITEM SOC'SEC'NO C 9;

ITEM AGE U 7;

TABLE EDUCATION;

BEGIN

ITEM GRAD'HS B;

ITEM BACH'DEG B;

ITEM MASTR'DEG B;

END

END

The following are correct references:

NAME(2, 3)

AGE(1, 5)

DETAIL'I D. EDUCATION.GRAD'HS(2, 3)

DETAIL'ID.EDUCATION .MASTRIDEG (1,5)

These data references may be used anywhere a simple item name may be

used.

Example

IF DETAIL'ID.EDUCATION.GRAD'HS AND CREDITS = 140;

DETAIL'ID.EDUCATION.BACH'DEG = TRUE;

1081-1 13:3-22

AL

Variant Entries: Given the following table declaration:

TABLE CHART;

ITEM AVE'TEMP A 8, 3;

ITEM AVEIRAIN A 8, 7;

ITEM SEASON STATUS (V(WINT), V(SPRG), V(SUMR),
V(FALL));

CASE SEASON

BEGIN

(DEFAULT):,

(V(WINT)): ITEM BELOWFRZ U;

(V(SUMR)) : ITEM ABOVE100 U:

END

Immediately following the statement,

SEASON = V(WINT);

the following items are made available: AVE'TEMP, AVE'RAIN, SEASON,
and BELOWFRZ. If a reference is made to ABOVE100, an error is

signalled.

If SEASON is set to V(SPRG), any reference to either BELOWFRZ

or ABOVE100 will cause an error to be signalled.

An item in a variant entry may be used anywhere a simple item may

be used.

Summary: An item in an undimensioned, uptyped table may simply

be named.

An item in a dimensioned, untyped table must have a subscript-

list.

An item in an undimensioned, typed table must be qualified.

possibly using dot-qualification.

1081-1 13:3-23 S J u

An item in a dimensioned, typed table must be qualified, possibly

using dot-qualification, and must have a subscript-list.

An item in nested, typed or untyped, undimensioned table must

be fully qualified.

An item in a nested, typed or untyped, dimensioned table must

be fully qualified and subscripted.

Errors signalled:

* Reference to an item in a presently inactive variant

0 Value of subscript out of range of dimension list.

TABLES IN RELATIONAL EXPRESSIONS

A relational operator compares two operands. The result of a

relational expression is a Boolean value. The value 1B'1' represents the

Boolean literal TRUE and the value 1B' the Boolean literal FALSE.

The relational operators are:

Operator Meaning

Equals

< Less than

> Greater than

< > Not equal

<= Less than or equal to

>= Greater than or equal to

The operands in a relational expression using any of the above

operators must be both of the same type class. They may be integer-

formulae, floating-formulae, fixed-formulae, character-formulae, status-

formulae, pointer-formulae, or (in JOVIAL (J731C)) table-formula.

1081-1 13:3-24

Integer, floating, and fixed comparisons are made on the basis of

the value of the operands. Character comparisons are made on the basis

of the collating sequence of the character set for a given implementation.

Status comparisons are made on the basis of the representation of the

status values. Pointer comparisons are made on a target machine dependent

basis.

Only the operators equals (=) and not equals (<>) may be used with

bit operands.

Tables may also be compared for equality using the equals and not

equals operators. Table comparisons are made on the basis of the bit

representations of the tables. If the bit representations are identical, the

tables are equal. Otherwise, they are not equal.

1081-1 13:3-25U T

SECTION 4I

SUB ROUT INES

~ a C34

SUBROUTINES

A subroutine is an algorithm (either a procedure or a function)

that may be invoked from more than one place in a program. They were

discussed in Workbook 6. JOVIAL (J73/C) provides the following five

extensions to JOVIAL (J73) relating to subroutines:

* the absolute address attribute

0 the INTERRUPT attribute

0 asterisk iength character declarations

* specified parameter binding

* the READONLY declaration

These extensions are discussed below.

ABSOLUTE ADDRESS ATTRIBUTE

The absolute-address-attribute gives the machine address at which

the subroutine is to be located.

The form is:

PROC name [use-attribute] [(formal-list) I
item-type-description] [absolute-address]

subroutine-body

Example

PROC IFACT (ARG) U POS(2200)

subroutine-body

Everytime the IFACT function is invoked, the entry to the code is found

at machine address 2200.

1081-1 13:4-1

INTERRUPT USE-ATTRIBUTE

The INTERRUPT use-attribute (given directly following the

procedure-name) may be given only in a non-nested procedure.

If INTERRUPT is specified, the interrupt-name is used to place

the procedure so that it is accessible to the target machine interrupt
hardware described by the character string.

The form is:

INTERRUPT interrupt-name

Interrupt-name is a character formula known at compile-time.

The INTERRUPT use-attribute should be used only for procedures
that are part of the executive or operating system of a particular

implementation.

A function may not be declared with the interrupt-attribute.

ASTERISK LENGTH CHARACTER DECLARATIONS

A character item that is a formal parameter may be delcared with

asterisk size.

Example

PROC SOME'MESSAGE (DATE, DISTRIBUTION, TOPIC :MEMO);

BEGIN

ITEM DATE C 8;

ITEM DISTRIBUTION U;

ITEM TOPIC C 15;

ITEM MEMO C *

*executable statements

END

1081-1 13:4-2

The procedure SOMEMESSAGE may be called with a date, a desired dis-

tribution list, and a topic. From that information, the procedure will

generate a memo of any length as the procedure's output. The length of

the memo will be that of the actual parameter corresponding to MEMO.

SPECIFIED PARAMETER BINDING

A formal parameter may specify the way in which it is bound to

its corresponding actual parameter. The form is:

I parameter-binding I parameter-name [register-binding]

Parameter-binding is one of the following:

BYVAL - indicates values binding

BYREF - indicates reference binding

Register binding indicates that the parameter is to be stored in a register

rather than in storage. The register-binding attribute has the form:

REGISTER target-register

Target-register is a character compile-time-formula that identifies the

register. It is machine dependent.

Examples

Consider the following declaration:

PROC FIGURE (ADDTAB1, ADDTAB2 : SUMTAB, COUNT);

BEGIN

TABLE ADDTAB1 (1 : 10);

ITEM ADD1 U;

TABLE ADDTAB2 (1 : 10);

ITEM ADD2 U;

TABLE SUMTAB (I : 10);

ITEM SUM U;

1081-1 13:4-3 5OPJ [li4

....I " - - ... !'
... ' .. I I . . - N -i :

ITEM COUNT U;

FOR I : 1 TO 10;

FOR J : 1 TO 10;

BEGIN

SUM(I, J) =ADD1(1, J) + ADD2(1, J);

COUNT = COUNT + 1;

END

END

No parameter or register binding is specified; the default semantics hold,

(the three tables are passed by reference, the output item - by value-

result).

Using the procedure-definition above, consider the following:

FPROC FIGURE(ADDTAB1, BYVAL ADDTAB2 : BYVAL SUMTAB2,
BYREF COUNT);

The table ADDTAB1 will be passed by reference (default). The table

ADDTAB2 will be passed by value (copied-in). The table SUMTAB2

will be passed by value-result (copied-in and copied-out). The item

COUNT will be passed by reference.

PROC FIGURE(ADDTAB1, ADDTAB2 : BYVAL SUMTAB TBL1,
BYREF COUNT GPR1);

The table SUMTAB will be passed by value-result. The value of the

table will be stored in register TBL1. The item COUNT will be passed

by reference. The address of the item will be stored in register GPRI.

NOTES: If register-binding is specified, parameter-

binding must also be specified.

It is illegal to specify BYVAL for a parameter value too

large to be contained in a register.

1081-1 13:4-4

L

THE READONLY-DECLARATION

The readonly-declaration may be given only in a subroutine. It

asserts that the specified data may be accessed in the subroutine only

for reading.

The form of the readonly-declaration is:

READONLY data-name.

Any attempt to change the value of a data object named in a readonly-

declaration in the subroutine that contains the readonly-declaration is

an error.

The data-names given in a readonly-declaration must be known in

the scope of that declaration. If a data-name is a table or a block, the

effect of the readonly-declaration extends to all the components of the

table or block.

1081-1 13:4-5 3 FJ~.

SECTION 5

BUILT-IN FUNCTIONS

BUILT-IN FUNCTIONS

JOVIAL (J73/C) provides four additional built-in functions:

* NENT

* FIRST

* LAST

* NEW

NENT

The NENT function returns the number of entries in the table or

table-type given as its argument.

The form is:

The NENT (argument)

The type returned is S with default size.

Example

Given the following declarations:

TYPE DIMENSIONS TABLE

BEGIN

ITEM LENGTH U;

ITEM HEIGHT U;

ITEM WIDTH U;

END

TABLE COMPONENTS(10, 5) DIMENSIONS;

NENT(DIMENSIONS) returns 1

NENT (COMPONENTS) returns 66

1081-1 13:5-1 U Flm

INVERSE FUNCTIONS

Status Types:

Just as in JOVIAL (J73), the inverse functions find the lowest and

highest values of the status-list associated with a status argument.

The inverse functions are:

FIRST status-variable)
(.status-type)

The inverse function that find the highest value has the form:

LAST status-variable

Lstatus-type)

The type of the result is the same as the type of the argument.

Examle

TYPE LEITER (2V(A), 3V(B), 1V(C), 8V(D), 4V(E));

ANSWER = FIRST(LETTER);

RESULT = LAST(LETTER);

ANSWER is assigned V(C) and RESULT is assigned V(D).

Numeric Types:

In J73/C, the inverse functions find the lowest and highest values
of the item associated with the numeric argument as well:

The inverse function that finds the lowest value has the form:

FIRST (numeric-variable))numeric-type-name

The inverse function that finds the lowest value has the form:

LAS (numeric-variableLAST (numeric-type-name

The type of the result is the same as the type of the argument.

NOTES: Signed and unsigned integer, floating point, and

fixed point ore all permissible numeric types.

1081-1 13:5-2

. .. . I 1

Example

ITEM VALUE F 15, -6.75 : 49.25;

FOR I : FIRST(VALUE) BY .25 TO LAST (VALUE);

NEW FUNCTION

The NEW function is used in connection with dynamic storage

allocation to obtain storage.

The form of the NEW function is:

NEW (table-type-name)

The table-type-name given as an argument may or may not be associated

with a zone. If it is not, a call on the NEW function allocates storage

for a data object of the specified type in heap storage and returns a

pointer to that newly allocated object.

If the table-type-name is associated with a zone, a call on theINEW function invokes the ALLOC function defined for the associated zone,
implicitly passing the WORDSIZE of the table-type-name argument in

addition to the table-type-name. The ALLOC function returns an untyped

pointer, which is implicitly converted to a typed pointer and is the NEW

function return value.

The type of the value returned is a pointer with a type-name

attribute of the table-type-name argument.

1081-1 13:5-3 WCU i0 i

SECTION 6

DIRECTIVES

-A

DIRECTIVES

Directives are used to provide supplemental information to the

compiler about the program. Directives affect output format, program

optimization, data and subroutine linkage, debugging information, and

other aspects of program processing. JOVIAL (J73/C) provides two

additional directives - the compoolrefsonly-directive and the characters-

directive.

COMPOOLREFSONLY-DIRECT IVE

The compoolrefsonly-directive is used to restrict the use of REF-

specifications to compools. If a procedure-module or a main-program-

module has a compoolrefsonly-directive, the use of REF-specifications in

that module is prohibited and the compiler will issue an error message if

a REF-specification is encountered.

The form of this directive is:

COMPOOLREFSONLY;

The effect of using a compoolrefsonly-directive is to require that all

inter-module communication occur via compools by the use of compool-

directives.

The compoolrefsonly-directive must be given only after all

compool-directives and before the text of the module. Only one

compoolrefsonly-directive may be given in a module. A compoolrefsonly-

directive in a compool-module has no effect.

CHARACTERS-DIRECTIVE

The characters-directive is supplied for the case in which

an implementation has more than one supported character set. The

characters-directive is used to specify which character set is to be used

to represent character data. The form of the characters-directive is:

1081-1 13:6-1 50PTI&MM..

CHARACTERS set-name

Set-name is a name defined by the implementation for each supported

character set. An implementation may have several character sets or

only one.

If a characters-directive is not given, an implementation-dependent

default character set is assumed.

The representations of the status-constants in the status-list of

the built-in status type ALPHA are the bit patterns associated with the

characters in the character set indicated by either the explicit or default

characters-directive. For each supported character set, an implementation

must supply an ALPHA status-list.

The size for ALPHA is considered to be the minimum number of bits

needed to represent the values in the designated character set as unsigned

integers.

The characters-directive may appear only following the word

START at the beginning of a module, preceding another directive or text.

Only one characters-directive may be given in a module. All

modules in a complete program must either have no characters-directive

or must have the same characters-directive.

1081-1 13:6-2

THE JOVIAL (J73) WORKBOOK

VOLUME 14

ZONES AND ENCAPSULATIONS

1081-1

April 1981

This material may be reproduced by
and for the US Government pursuant
to the copyright license under DAR
Clause 7-104.9(a) (1977 APR).

Submitted to

Department of the Air Force
Rome Air Development Center

ISIS
Griffiss Air Force Base, NY 13441

Prepared by

SofTech, Inc.
460 Totten Pond Road
Waltham, MA 02154

©Copyright, SofTech, Inc., 1981

PREFACE

Workbook 14 is intended for use with Tape 14 of the JOVIAL (J73)

Video Course. Its purpose is to elaborate upon and reinforce concepts

and language rules introduced in the videotape.

Section 1 discusses the declaration and use of zones in JOVIAL

(J731C). In addition the ALLOC function and the DEALLOC procedure

are also addressed. An additional CHOL extension -- encapsulated

data -- is treated in Section 2. Section 3 is a review of the material

presented in this segment.

1081-1 SOlTrL-H

TABLE OF CONTENTS

Section Page

SYNTAX 14: iv

1 ZONES 14:1-1

2 ENCAPSULATED DATA 14:2-1

3 SUMMARY 14:3-1

1081-1 14:iii SoFrWcm

SYNTAX

The syntax conventions used in the JOVIAL (J73) Video Course

and workbook are as follows:

Syntax Meaning Sample Expansions

[some-feature] B rackets indicate an some-feature
optional feature. OR

nothing

(one I other} Braces with a vertical one
bar indicate disjunction- OR
a choice between other
alternatives.

his-one, Braces with each feature this-one
that-one on separate lines indicate OR

disjunction - a choice that-one
between alternatives.

letter ... The sequence ... ' letter
indicates one or more letter letter
repetitions of a feature. letter letter letter

(letter),... The sequence "..." (letter)
following a comma (or a (letter) (letter)
colon) indicates one or (letter) (letter) (letter)
more repetitions of the
feature separated by
commas (or colons).

this-one), Syntax symbols may be this-one + (another)
that-one/i combined, that-one + (another)
+ another + (another)

1081-1 14:iv SCWT&PC3.1

SECTION 1

ZON ES

soFr-&cH

ZONES

A zone is a special portion of storage that may be allocated,

formatted, and deallocated by the programmer. Any number of zones may

be declared. Each zone has a certain amount of storage and special

subroutines that handle the allocation, formatting, and deallocation of

that storage. The data that is allocated in a zone is data declared using

a table-type-name that has a zone-part specified in its declaration.

ZONE-DECLARATION

A zone is declared as follows:

ZONE zone-name [zone-heading I

BEGIN

zone-storage

subroutine-definition ...

END

The square brackets indicate that the zone-heading is optional.

The sequence '...' indicates that one or more subroutine-definitions may

be given in the zone-declaration.

A zone-declaration must have an ALLOC function and a DEALLOC

procedure defined. The ALLOC function is implicitly invoked when the

program calls the NEW function to allocate storage for a table of a type

declared with a zone-part. The DEALLOC procedure is implicitly invoked

when the program calls the FREE procedure to return storage for such

a table.

Zone Heading

The zone-heading may include information about the allocation, the

location in memory, and the number of words in the zone. The form of a

zone-heading is:

1081-1 14:1-1 SOFTl .i

F1

[allocation-spec I [absolute-address I [W zone-size I

The square brackets indicate that all the components in the zone-heading

are optional.

If an absolute-address is given, the zone is allocated starting at

the specified address in memory. An absolute-address may be given only

if the allocation of the zone is STATIC either explicitly or by default.

The zone-size in a zone-heading gives the number of words to be

allocated for a zone. Zone-size is an integer formula known at compile-

time. If zone-size is given, all tables in zone-storage must be specified

tables.

Zones are represented as tables. Zones may contain specified

table-options or ordinary table-options. The size of the zone is determined

by the zone-size if the zone consists of specified table-options. Otherwise,

the size of the zone is determined by the way the compiler chooses to

allocate the ordinary table-options.

Given the following zone-declaration:

ZONE BIGZONE;

BEGIN

TABLE SPACE (I : 1000);

ITEM ONESPACE U;

PROC ALLOC () P;

PROC DEALLOC (,

END

Storage for zone BIGZONE requires 1000 words.

1081-1 14:1-2

Zone Storage

Zone-storage is expressed as one or more table-options. The
declared tables may be used to simply save space that may be allocated

under a format to be specified later. The form is:

table-option ...

Given the following zone-declaration:

ZONE SMALLZONE;

BEGIN

TABLE WORDS (1 : 100);

ITEM DATA U;

TABLE FLAGS (I : 100) T;

ITEM AVAIL B;

PROC ALLOC () P;

PROC DEALLOC (

END

Storage for zone SMALLZONE requires of 100 words and 100 bits.

ZONE-PART IN A TABLE-TYPE-DECLARATION

A type that is to be associated with a zone has a zone-part in
its declaration, as follows:

TYPE table-type-name [zone-part]

TABLE [table-heading];

entry-description

1081-1 14:1-3

~ -~.. ,

Zone-part has the form:

IN zone-name

Table-heading consists of the dimension-list, structure-spec, like-

option, packing-spec, or table-type-name; any of which is optional.

When the NEW function is used with a table-type-name declared

with a zone-part, the compiler invokes the ALLOC function for that zone

to allocate storage from the zone instead of from heap storage.

Given the following declarations:

ZONE MESSAGEPOOL;
BEGIN
TABLE SPACE (1 : 10000);
ITEM ONESPACE U;
PROC ALLOC () P;

PROC' DEALLOC (,

END"
TYPE MESSAGE IN MESSAGEPOOL TABLE;

BEGIN
ITEM TEXT C 132;
ITEM CODE U;
END

TYPE STATISTICS TABLE;
BEGIN
ITEM COUNT U;
ITEM FREQUENCY F;
END

ITEM MESSAGEPTR P MESSAGE;
ITEM STATPTR P STATISTICS;

When the NEW function is called with the table-type-name

STATISTICS, the storage for that type is supplied from heap storage.

When the NEW function is called with the table-type-name MESSAGE, the

ALLOC function associated with zone MESSAGEPOOL is invoked.

Similarly, when the FREE procedure is called with the actual

parameter STATPTR, storage is returned to heap storage. When the FREE

procedure is called with the actual parameter MESSAGEPTR, the DEALLOC

procedure associated with zone MESSAGEPOOL is invoked and the actions

dictated by that subroutine are performed.

1081-1 14:1-4

ALLOCAT ION

A zone-declaration must have an ALLOC function and a DEALLOC
procedure.

When the NEW function is called with a table-type-name that has a

zone-part, the ALLOC function in the designated zone-declaration is

invoked to handle the allocation. When the FREE procedure is called with

an actual parameter that points to an object whose type is associated with

a zone, the DEALLOC procedure in that zone is invoked to handle the

deallocation.

The ALLOC Function

The ALLOC function must have exactly one parameter, an input

parameter of type integer. The size and range of this parameter must be

large enough to hold the WORDSIZE of the largest object to be allocated

in that zone.

When the NEW function is called with a table-type-name that has a

zone-part, the WORDSIZE of a table of the type of the actual parameter

of NEW is implicitly passed to the formal parameter. The value returned

by ALLOC is the value of the NEW function. The type of that value is

implicitly converted to P table-type-name, where table-type-name is the

actual parameter of NEW.

For example, the NEW function may be called as follows:

NEW (MESSAGE)

MESSAGE is a table-type-name with a zone-part. The programmer-

supplied ALLOC function in MESSAGEPOOL is invoked, and its return

value, a pointer to an object of type MESSAGE, becomes the value of NEW.

An example of an ALLOC function is given later in this section.

CI
1081-1 14:1-5 %OP'&PC9

J--

The DEALLOC Procedure

The DEALLOC procedure must have exactly two input parameters.

The first parameter must be an untyped pointer and the second must be

an integer whose size and range must be large enough to hold the

WORDSIZE of the largest object to be allocated in that zone.

When the FREE procedure is called with an actual parameter that

points to an object whose type is associated with a zone, the address of the

actual parameter is implicitly passed to the first formal parameter of the

DEALLOC procedure, and the WORDSIZE of the type associated with the

pointer argument of FREE is implicitly passed to the second formal

parameter.

For example, the FREE procedure may be called, as follows:

FREE (MESSAGEPTR);

MESSAGEPTR is a pointer that points to an object of type MESSAGE. The

type MESSAGE is declared with a zone-part. The programmer-supplied

DEALLOC procedure in MESSAGEPOOL is invoked. The address of

MESSAGEPTR is passed as the first parameter and the WORDSIZE of

MESSAGE, the type associated with MESSAGEPTR, is passed as the second

parameter.

An example of a DEALLOC procedure is given later in this section.

ZONE INITIALIZATION

If the declaration of the zone inclvdes an INITIALIZE subroutine,

that subroutine is invoked implicitly after storage for the zone is

allocated and before execution of any of the statements in the scope

containing the zone declaration.

An example of an INITIALIZE subroutine is given below.

1081-1 14:1-6

Zones: An Example

The following is a simple example of some storage management sub-

routines declared for zone DATA.

ZONE DATA
BEG IN
TABLE SPACE (1 : 1000);

ITEM WORD U;
TABLE FLAG (1 : 1000) T;

ITEM AVAIL B;

PROC ALLOC (XX) P;
BEGIN
ITEM XX U;
FOR I : 1 TO 1000;

IF AVAIL (I);
BEGIN
FOR J : I TO I + XX - 1;

IF NOT AVAIL (J);
GOTO NEXTWORD;

ALLOC = LOC (WORD(1)));
FOR J : I TO I + XX - 1;

AVAIL () = FALSE;
RETURN;
NEXTWORD:
END

ERROR (FULL);
END

PROC DEALLOC (PTR, XX);
BEGIN
ITEM PTR P;
ITEM XX U;
ITEM INDEX U;
INDEX = (U (PTR) - U (LOC (SPACE))) I LOCSINWORD;
FOR I INDEX TO INDEX + XX - 1;

AVAIL (I) = TRUE;
END

PROC INITIALIZE;
FOR I : 1 TO 1000;

AVAIL (I) = TRUE;
END

The zone DATA contains two tables, each of which has 1000 entries. Table

SPACE contains 1000 unsigned integers; table FLAG contains Boolean flags

that indicate whether the corresponding entry in table SPACE is available

or unavailable.

1081-1 14:1-7 SO

The INITIALIZE procedure is implicitly invoked after storage for

zone DATA is allocated. It sets all the entries in table FLAG to TRUE, to

indicate that the corresponding word in table SPACE is available.

The ALLOC function is implicitly invoked when space in the zone is

requested. It searches table FLAG until it finds an available entry, and

searches starting at the entry and continuing for the number of words

needed to see if enough space is available to satisfy the allocation request.

If so, it returns a pointer to the first word of the allocated space, and

flags the corresponding entries in table FLAG FALSE to indicate that the

space is no longer available. If enough space is not found, ALLOC

continues searching. If no available storage is found, an error subroutine

is called.

The DEALLOC procedure is implicitly invoked when space is to be

returned to the zone. It locates the appropriate index into table FLAG

and sets the number of flags indicated to TRUE to show that the corres-I ponding words in table SPACE are available.

These routines do not physically allocate or deallocate storage.

Instead, they manipulate storage within the zone, which was allocated by

the zone-declaration.

Consider a use of storage allocated from the above zone:

TYPE READING IN DATA TABLE;
BEGIN
ITEM LAT A 8,7;
ITEM LONG A 8,7;
ITEM TIME C 4;
ITEM DATE U;
END

TYPE SPECS IN DATA TABLE;
BEGIN
ITEM VOLUME C 4;
ITEM CODE B BITSINWORD;
END

ITEM READPTR P READING;
ITEM SPECPTR P SPECS;

1081-1 14:1-8

. ii i i # , . .l - _ _

The use of the NEW function with the table-typ:-name READING,

which is declared with a zone-part, invokes the ALLOC function declared

for the appropriate zone, in this case, zone DATA.

READPTR = NEW (READING);

The WORDSIZE of the table-type READING, 4 if BYTESINWORD is

4, is passed to the ALLOC function. The ALLOC function searches table

FLAG and returns a pointer to a block of four unsigned integers in the

zone DATA if space is available. The pointer returned by the ALLOC

function is implicitly converted to a pointer of type READING and is the

value of the NEW function.

The use of the NEW function with the table-type-name SPECS, which

is declared with a zone-part, invokes the ALLOC function declared for the

appropriate zone, in this case, zone DATA.

SPECPTR = NEW (SPECS);

The WORDSIZE of the table-type SPECS, 2 if BYTESINWORD is 4,

is passed to the ALLOC function. The ALLOC function searches table

FLAG and returns a pointer to a block of two unsigned integers in zone

DATA if space is available. The pointer returned by the ALLOC function

is implicitly converted to a pointer of type SPECS and is the value of the

NEW function.

Similarly, the use of FREE with a pointer associated with a type

declared with a zone-part returns storage to the appropriate zone. For

example, the function-call FREE(READPTR) releases four words starting

at the indicated position in zone DATA. and the function-call FREE(SPECPTR)

releases two words, starting at the indicated position in zone DATA.

The implicit pointer conversions make it unnecessary for the types

of the tables allocated by NEW (and ALLOC) or their fields to be

equivalent to the tables declared in the type of the zone-storage.

1081-1 14:1-9 Ub

SECTION 2

ENCAPSULATED DATA

ENCAPSULATED DATA

JOVIAL (J73/C) provides a capability that allows a data object to

be described in terms of the operations that may be performed on that

data rather in terms of its physical structure. An encapsulated data

object is a special kind of table whose components are not available for

access outside the encapsulation unless they are explicitly designated

as being available. The encapsulation may also contain definitions of

subroutines to manipulate the data. This process of identifying data

within an encapsulation as available for use outside the encapsulation is

called exportation.

An encapsulation may export data-names and subroutines-names.

Exported data may be designated as being available for reading only,

for writing only, or for both. Exported subroutines may manipulate

the data within the encapsulation. If only subroutines are exported,

the data within the encapsulation may be accessed only through the use

of these subroutines.

ENCAPSULATED DECLARATIONS

An encapsulation may be given in either a table- or a table type-

declaration. In a table-declaration the encapsulation follows the table-

name, as follows:

TABLE table-name encapsulation

In a table type-declaration, the encapsulation follows the table-type-name,

as follows:

TYPE table-type-name encapsulation

As with other data, declaring an encapsulation in a table-

declaration produces a data object, while declaring an encapsulation

in a type-declaration declares a template that may be used in table-

declarations.

1081-1 14:2-1 Sc

The form of an encapsulation is:

ENCAPSULATION

BEGIN

EXPORTS exported-component ...

[type-declaration ...]

entry-description

subroutine-definition ...

END

One or more exported-components, separated by commas, may

be given. Any number of subroutine-definitions may be given.

Names of types, items, tables, and subroutines declared or

defined within an encapsulation are not available outside the encapsulation

unless they are exported.

In the simplest case, an exported-component is simply a name. A

name given as an exported-component must be declared within the

encapsulation.

For example:

TABLE STACK ENCAPSULATION;
BEGIN
EXPORTS POP, PUSH, INIT;
TABLE TSTACK (1 : 1000);

ITEM VALUE U;
ITEM TOP U;
PROC INIT;

TOP = 0;
PROC PUSH (VAL);

BEGIN
ITEM VAL U;
TOP = TOP + 1;
VALUE (TOP) = VAL;
END

1081-1 14:2-2

---- 777

PROC POP (: VAL);
BEGIN
ITEM VAL U;
VAL = VALUE (TOP);
TOP = TOP - 1;
END

END

This encapsulation implements a stack. It exports the names of

three subroutines, INIT, POP, and PUSH. The actual physical

representation of the stack is irrelevant to the programmer using the

exported subroutines. As long as the interface (the calling sequence) to

the subroutines does not change, the physical representation of the stack

may be altered without affecting the programmer's use of the encapsulated

data.

Kinds of Access

The kind of access that may be made to the exported-component

outside the encapsulation may be given before the exported-component,

as follows:

[access I name

Two forms of access may be specified:

READONLY

WRITEONLY

If READONLY access is specified, the name may only be read; it may not

be used in any context in which its value is changed; for example, as the

target of an assignment-statement or as an output parameter. If

WRITEONLY access is specified, the name may only be written; it may

not be used in any context in which its value is referenced. If access is

not specified, the name may be both read and written.

1081-1 14:2-3 5O Jr .

L. "W..1 Jl : . . .

The following is an example of export-access:

TABLE TAX ENCAPSULATION;
BEGIN
EXPORTS READONLY TAXRATE, CHANGERATE;
TABLE TAXRATE (9);

ITEM RATE F;
PROC CHANGERATE (FACTOR);

BEGIN
ITEM FACTOR F;
FOR I : 0 TO 9;

RATE (I) = (1 + FACTOR) * RATE (I);
END

END

The table TAXRATE is exported for READONLY access from the

TAX encapsulation. It may be examined outside the encapsulation, but

any change to TAXRATE must be made within the encapsulation by using

the encapsulated subroutine CHANGERATE. For example:

IF RATE (0) < STANDARD;

CHANGERATE (STANDARD - RATE (0));

Exported Nested Table Names

When a table-name is given as an exported-component, the name of

the table and the names in the top level of the table's structure are

exported. The name of an item or table within a nested table may not be

exported unless the name of the enclosing table is also exported.

The with-phrase is used to export the names of entries in nested

tables. It is given following the name of the enclosing table in an exported-

component, as follows:

[access] name [WITH (exported-component...)]

The names given as exported-components in a with-phrase must be

components of the nested table whose name precedes the WITH.

1081-1 14:2-4

Given the following table encapsulation:

TABLE LEAGUE ENCAPSULATION;
BEGIN
EXPORTS TEAM;
ITEM LEAGUENAME C 10;
TABLE RULES (100);

ITEM RULENO C 20;
TABLE TEAM (10);

BEGIN
ITEM NAME C 15;
ITEM CITY C 15;
TABLE RECORD;

BEGIN
TABLE WINS;
BEGIN
ITEM SHUTOUTS U;
ITEM OTHER U;
END

ITEM LOSSES U;
END

ITEM OWNER C 15;
END

The exported-component is the name TEAM, the name of a table,

so the names of the top level structure of that table (NAME, CITY, RECORD,

and OWNER) are also exported.

To make available the names of the top level within the nested table

RECORD, the table RECORD must be exported with a with-phrase, as

follows:

EXPORTS TEAM, RECORD WITH (WINS, LOSSES);

To make available the name SHUTOUT, the following may be written:

EXPORTS TEAM, RECORD WITH (WINS WITH (SHUTOUTS), LOSSES);

ENCAPSULATED SUBROUTINES

Encapsulated data may be accessed by subroutines declared within

the encapsulation. Such subroutines are called encapsulated subroutines.

1081-1 14:2-5 5 F g i

If an encapsulated subroutine-name is exported, the subroutine may be

used to manipulate the data that is not exported.

Subroutines in a Table Encapsulation

The following is an example of a subroutine-definition in a table
encapsulation:

TYPE MONEY A 12,2;
TABLE ACCOUNT ENCAPSULATION;

BEGIN
EXPORTS TRANSACT;
ITEM SSNO C 12;
ITEM BALANCE MONEY;
PROC TRANSACT (INCR);

BEG IN
ITEM INCR MONEY;
IF BALANCE + INCR < 0.0;

REPORT ('OVERDRAWN');
ELSE

BALANCE = BALANCE + INCR;
END

END
The table encapsulation ACCOUNT exports the subroutine

TRANSACT, which may be used to adjust BALANCE. The value of

BALANCE is not available outside the encapsulation.

An example of the use of TRANSACT is:

CASE DAY;
BEG IN
(DEFAULT):;
(1): TRANSACT (-MORTGAGE);
(15): TRANSACT (SALARY);
(28): TRANSACT (-SAVINGS);
END

This case-statement subtracts the mortgage from balance on the first day

of the month, adds in the salary on the fifteenth day, and subtracts off

the savings on the twenty-eighth day.

1081-1 1 4:2-6

Subroutines in a Type Encapsulation

A subroutine in a type encapsulation must be written to handle the

encapsulated data in a general way, because the type encapsulation may

be used to declare many different tables. An actual table of the encap-

sulated type must be passed as one of the parameters to the subroutines

associated with that encapsulated type.

Given the following type encapsulation:

TYPE ACCOUNT ENCAPSULATION;
BEG IN
EXPORTS TRANSACT;
ITEM SSNO C 12;
ITEM BALANCE MONEY:
PROC TRANSACT (ACNT, INCR);

BEGIN
TABLE ACNT ACCOUNT;
ITEM INCR MONEY;
IF ACNT.BALANCE + INCR < 0.0;

REPORT ('OVERDRAWN');
• ELSE

ACNT.BALANCE = ACNT.BALANCE +
INCR;

END
END

The encapsulated type ACCOUNT may be used to declare any

number of tables and the TRANSACT subroutine may be used by any of

these tables to adjust the balance. The TRANSACT subroutine has been

generalized by the inclusion of an additional formal parameter ACNT,

which is declared to be of the encapsulated type ACCOUNT. The

subroutine is written using name qualification as shown above.

The following example uses the encapsulated type ACCOUNT:

TABLE SMITH ACCOUNT;
TABLE JONES ACCOUNT;

IF GOLD > 1000;
BEGIN
TRANSACT (JONES, -1000);
TRANSACT (SMITH, 1000);
END

1081-1 14:2-7

The tables SMITH and JONES are both declared to have type

ACCOUNT. The TRANSACT subroutine is used to subtract 1000 from
the JONES account and add 1000 to the SMITH account if GOLD exceeds

1000.

if the encapsulated type is used to declare a dimensioned table,

as follows:

TABLE BANK (100) ACCOUNT;
The TRANSACT subroutine may be used to add 10 to the balance of each
account in BANK as follows:

FOR i: 0 TO 100;

TRANSACT (BANK (1), 10);

INITIALIZING ENCAPSULATED DATA

Data objects in an encapsulation may not be initialized by a preset.
These data objects must be initialized by a subroutine.

The encapsulation for a stack given earlier in this chapter

illustrates initialization:

TABLE STACK ENCAPSULATION;
BEGIN
EXPORTS POP, PUSH, INIT;
TABLE TSTACK (1000);

ITEM VALUE U;
ITEM TOP U;
PROC INIT;

TOP = 0;
PROC PUSH (VAL);

BEG IN
ITEM VAL U;
TOP =TOP + 1;
VALUE (TOP) =VAL;
END

PROC POP (: VAL);
BEGIN
ITEM VAL U;
VAL = VALUE (TOP);
TOP = TOP -1

END
END

The INIT subroutine sets the value of TOP to zero.

*1081-1 14:2-8

ASSIGNING VALUES TO ENCAPSULATED DATA

An encapsulated table may be given as the target of an assignment-

statement only if the subroutine-name ASSIGN is exported. If the

ASSIGN subroutine is defined within the encapsulation, it is invoked

whenever the assignment operator is applied to an encapsulated table

outside of the encapsulation. If the ASSIGN subroutine is not defined

within the encapsulation, the default semantics (bit by bit copy) of

table assignment apply.

By defining the ASSIGN subroutine within an encapsulation, the

default semantics of the assignment-statement may be overridden. The

ASSIGN subroutine is a procedure and it must have exactly one input

parameter and one output parameter. These parameters must be of the

encapsulated type.

The following example implements a stack using a linked list

F. representation:

TYPE LSTACK ENCAPSULATION;
BEGIN
EXPORTS PUSH, POP, INIT, ASSIGN;
TYPE USTACK TABLE;

BEGIN
ITEM VALUE U;
ITEM LINK P USTACK;
END

ITEM HEADPTR P USTACK;
PROC PUSH (DATA, STACK);

BEGIN
ITEM DATA U;
TABLE STACK LSTACK;
ITEM P1 P USTACK;
P1 = NEW (USTACK);
VALUE @ P1 = DATA;
LINK @ P1 = STACK.HEADPTR;
STACK.HEADPTR P1;
END

1081-1 14:2-9

PROC POP (STACK) U;
BEGIN
TABLE STACK LSTACK;
ITEM P1 P USTACK;
PI HEADPTR;
POP = VALUE @ P1;
STACK.HEADPTR = LINK @ P1;
FREE (P1);
END

PROC INIT (STACK);
BEGIN
TABLE STACK LSTACK;
STACK.HEADPTR = NULL;
END

PROC ASSIGN (STACKSOURCE : STACKTARGET);
BEGIN
TABLE STACKSOURCE LSTACK;
TABLE STACKTARGET LSTACK;
ITEM P1 P USTACK;
ITEM P2 P USTACK;
P2 = STACKTARGET.HEADPTR;
FOR P1 : STACKSOURCE.HEADPTR THEN LINK

@ P1 WHILE P1 <> NULL;
BEGIN
IF P2 = NULL;

BEGIN

P2 = NEW (USTACK);
LINK @ P2 = NULL;
END

VALUE @ P2 = VALUE @ P1;
P2 = LINK @ P2;
END

FOR P2 : LINK @ P2 THEN LINK @ P2 WHILE
P2 <> NULL;

FREE (P2);
END

END

The INIT subroutine sets the HEADPTR of the designated stack to

NULL to indicate an empty stack. The PUSH subroutine pushes an entry

onto the stack. The POP subroutine pops an entry off the stack. The

ASSIGN subroutine is used to set one stack equal to another. Given the

following program fragment:

1081-1 14:2-10

TABLE NEWDATA LSTACK;
TABLE OLDDATA LSTACK;
INIT (NEWDATA);
INIT (OLDDATA);
FOR I : 0 TO 100;

PUSH (NEWDATA, SAMPLE (CODE));
OLDDATA = NEWDATA;

This fragment collects 101 sample values in the stack NEWDATA and

then copies that data into the stack OLDDATA.

Normal Assignment for an Encapsulated Table

If the assignment of an encapsulated data object is to have the

same semantics as the assignment operator, the name ASSIGN is given in

the export-list but is not defined in the encapsulation.

Given the following encapsulation that implements a stack as a

table:

TYPE TSTACK ENCAPSULATION;
BEGIN
EXPORTS POP, PUSH. INIT, ASSIGN;
TABLE USTACK (1000);

ITEM VALUE U;
ITEM TOP U;
PROC INIT (STACK);

BEGIN
TABLE STACK TSTACK;
STACK.TOP = 0;
END

PROC PUSH (STACK, VAL);
BEGIN
TABLE STACK TSTACK;
ITEM VALU U;
STACK.TOP = STACK.TOP + 1;
STACK.USTACK.VALUE (STACK.TOP) = VAL;
END

PROC POP (STACK : VAL);
BEGIN
TABLE STACK TSTACK;
ITEM VAL U;
VAL = STACK.USTACK.VALUE (STACK.TOP);
STACK.TOP STACK.TOP - 1;
END

END

1081-1 14:2-11

V............ . .- --- -.... _____II I I

Since the ASSIGN subroutine-name is given in the export-list, data

objects of the encapsulated type may be used on the left hand side of an

assign ment- statement, as follows:

TABLE REQUESTS TSTACK;
TABLE BACKLOG TSTACK;

BACKLOG = REQUESTS;

Since the underlying representation of TSTAC(is a table, the

default assignment semantics for tables is appropriate, and the bit

representation of the source table will be copied into the target table.

if the ASSIGN subroutine-name is not given in the export-list,
an encapsulation may not be used as the target of an assignment-statement.

Assignment within the Encapsulation

Within the encapsulation, the assignment operator may be used
with its usual meaning. The ASSIGN subroutine may also be used, but it

must be called as a subroutine.

COMPARING ENCAPSULATED TABLES

An encapsulated table may be used in a relational expression only

if the subroutine-name COMPARE is exported. If the COMPARE subroutine

is defined within the encapsulation, it is invoked whenever a relational
operator is applied to an encapsulated table outside of the encapsulation.

If the COMPARE subroutine is not defined within the encapsulation, the

default semantics (bit by bit comparison) of table comparison apply.

By defining the COMPARE subroutine within an encapsulation, the

default semantics of the equals and not equals operators may be overridden.

The COMPARE subroutine is a function and it must have exactly two

input parameters. The type of these parameters must be of the
encapsulated type. The COMPARE function returns a Boolean value.
TRUE or FALSE.

1081-1 14:2-12

The COMPARE function is invoked when tables of the encapsulated

type are used in a relational expression outside of the encapsulation. A

relational expression with table operands may use only the operators

equals (=) and not equals (<>) operators. The left operand of the

relational expression is passed to the COMPARE function as its first

parameter, and the right operand is passed as the second parameter. If

the relational expression contains the equals operator, the return value of

the COMPARE function is taken as the value of the relational expression.

If the relational expression contains the not equals operator, the return

value of COMPARE is the negation.

Given the following COMPARE function for the encapsulation

LSTACK given earlier:

PROC COMPARE (STACKL, STACKR) B 1;
BEGIN
TABLE STACKL LSTACK;
TABLE STACKR LSTACK;
ITEM P1 P USTACK;
ITEM P2 P USTACK;
P2 = STACKR.HEADPTR;
FOR P1 . STACKL.HEADPTR THEN LINK @ P1 WHILE

P1 <>NULL;
BEG IN
IF P2 = NULL;

BEGIN
COMPARE = FALSE;
RETURN;
END

IF VALUE @ P1 = VALUE @ P2;
P2 = LINK @ P2;

ELSE
BEGIN
COMPARE = FALSE;
RETURN;
END

END
IF P2 NULL;

COMPARE = TRUE;
ELSE

COMPARE = FALSE;
END

1081-1 14:2-13

'73

If the encapsulation LSTACK exports this COMPARE subroutine,

two stacks may be compared, as follows:

TABLE REQUESTS LSTACK;
TABLE BACKLOG LSTACK;

IF REQUESTS =BACKLOG;
BACKUP;

UPDATING ENCAPSULATED DATA

If an encapsulated data object is given in the protection-list of an

updated-statement, the encapsulation must export the names ENTRY and

COMPLETION. If the encapsulation includes a definition for the subroutines

ENTRY and COMPLETION, these subroutines are used to lock and unlock

the data on entry and exit from the u pda te- statement. If not, the default

semantics for locking and unlocking protected data are applied.

ENTRY and COMPLETION, if defined in the encapsulation, must

both be procedures with no parameters. If one is defined in the

encapsulation, the other must be defined. Similarly, if one is exported,
the other must be exported.

1081-1 14:2-14

SECTION 3

SUMMARY

I

SUMMARY

ZONE FIRST; I
BEGIN storage allocated in the zone; first table
TABLE SPACE (1 12); used with NEW, FREE; second table to keep

ITEM ONESPACE U; track of availability of space
TABLE AVAILTAB (i : 12) T;

ITEM AVAILABLE B;

PROC ALLOC (ENTSIZE) P;
BEGIN invoked when NEW function-call appears in
ITEM ENTSIZE U; program; takes one input parameter (integer);
ALLOC = NULL; return-value is an untyped pointer, implicitly
FOR I : 1 TO 12; converted to a typed pointer and returned as

IF AVAILABLE (I); the value of NEW
BEGIN
ALLOC LOC(ONESPACE (I));
FOR J 1 TO ENTSIZE;

AVAILABLE (I - 1 + 2) = FALSE;
END

END

PROC DEALLOC (PTR. ENTSIZE);
BEGIN | invoked when FREE procedure-call appears in
ITEM PTR P; program; takes two input parameters (first
ITEM ENTSIZE U; I one an untyped pointer, second one an
INDEX = 1 + ((* U *)(PTR) = (LOC(SPACE))) integer)

/ LOCSINWORD;
FOR I : INDEX TO INDEX + ENTSIZE - 1;

ENDAVAILABLE (I) = TRUE;

PROC INITIALIZE
BEGIN
FOR I : 1 TO 12;

BEGIN implicitly invoked after storage allocated
AVAILABLE (I) TRUE; for the table SPACE, AVAILTAB
ONESPACE (I) = 0;
END

END
END end of zone-declaration

TYPE LISTYPE IN FIRST TABLE
BEGIN
ITEM VALUE U;
ITEM ANSWER B 4; declarations using the zone
ITEM NEXTOPTR LISTYPE;
END

ITEM LISTPTR P LISTYPE;

10811 14:3-1l c

A-I

Zone-Heading

The zone-heading can include information about the allocation

permanence, the location in memory, and the number of words in the

zone. The form of a zone-heading is:

[STATIC I [absolute-address] I W zone-size

The zone-size in a zone-heading gives the number of words to be

allocated for a zone.

Absolute-address is given with a POS-clause. An absolute address

may be given if he zone has static allocation explicitly or by default.

If zone-size is given, all tables declared in the zone must be

specified tables.

A zone may not be given PROTECTED allocation.

TABLE ENCAPSULATIONS

TABLE DATA ENCAPSULATION;
BEGINI export-list makes given names visible with read-
EXPORTS QUARTER'AVE, SEM'AVE, INIT, write access unless specified otherwise; table

ASSIGN, COMPARE, READONLY COURSE items are exported in a with-phrase
WITH (LETTER);

TABLE COURSE (1 : 4, 1 : 7);
BEGIN table-accessible to any subroutines in the
ITEM COURSENAME C 7; encapsulation; not visible unless exported;
ITEM HOMEWORK U 0 : 5; all names must be fully qualified
ITEM TEST U 0 : 5;
ITEM FINAL F 0.0 : 5.0;
ITEM LETTER C;
END

PROC QUARTER-AVE (QTR, HOUR);
subroutine-definition subroutines used to manipulate encapsulated

PROC SEMIAVE (SEM, HOUR); data; exported arid made visible
subroutine-definition

PROC INIT; subroutine used to preset data, exported and
subroutine-definition J made visible

PROC ASSIGN (SOURCE : TARGET);
subroutine-definition subroutines to override detault semantics of

PROC COMPARE (LEFT, RIGHT) B; assign (=) and compare (< > ; exported
subroutine-definition and made visible

END

1081-1 14:3-2

ADAL08 529 SOFTECH INC WALTHAM MA F/e 5/9
THE JOVIAL (J73) WORKBOOK. VOLUME 13. INTRODUCTIONOTO THECHOL, -ETC(U)
NOV 81

F
3602 79 C 0060

UNCLASSIFIED RADC-TR-1-333_VOL- 1

I m

1_; 13.2 22

116

2O

1 1.8BM

1.25 .6

Wit ROCOPY Rf; ON [I'[lifAff

N',

TYPE ENCAPSULATIONS

TYPE REPORT'CARD ENCAPSULATION;
BEGIN export-list makes given names visible with read-
EXPORTS QUARTERRAVE. SEMIAVE, INIT, write access unless specified otherwise; table

ASSIGN. COMPARE, READONLY COURSE items are exported In a with-phrase
WITH (LETTER);

TABLE COURSE (I : 4. 1 : 7);
BEGIN table accessible to any subroutines in the
ITEM COURSENAME C 7; encapsulation; not visible unless exported;
ITEM HOMEWORK U 0 : 5; all names must be fully qualified
ITEM QUIZ U 0 :5;(
ITEM TEST U 0 :ITEM FINAL F 0.0 : 5.0:

ITEM LETTER C
END

PROC QUARTER'AVE (REPORTAB, QTR, HOUR); subroutines used to manipulate encapsulated
subroutine-definition data; exported and made visible; REPORTAB

PROC SEM'AVE (REPORTAB, SEM, HOUR); will be declared to be of type REPORT'CARD;
subroutine the actual parameter bound to REPORTAB

may be any table of type REPORTICARD
PROC INIT (REPORTAB);

subroutine-definition

PROC ASSIGN (SOURCE : TARGET); subroutines to override default semantics
subroutine-definition \ of assign (=) and compare (- <>);

PROC COMPARE (LEFT, RIGHT) B3; (exported and made visible
E subroutine-definition
END

* 101-1 4:3- ~'1 cI..

THE JOVIAL (J73) WORKBOOK

VOLUME 15

CONDITION HANDLING

1081-1

April 1981

This material may be reproduced by

and for the US Government pursuant

to tbp copyright license
under DAR

Clause 7-104.9(a) (1977 APR).

Submitted to

Department of the Air Force

Rome Air Development Center
ISIS

Griffiss Air Force Base, NY 1341

Prepared by

SofTech, Inc.
460 Totten Pond Road

Waltham, MA 02154

0Copyright, Soffech, Inc.,Copyigh, Sf~ec, Ic.,1981

- ..

PREFACE

This workbook is intended for use with Tape 15 of the JOVIAL (J73)

Video Course. Its purpose is to elaborate upon and reinforce concepts

and language rules introduced in the videotape. Specifically addressed

language features include built-in and programmer defined conditions,

the signal-statement, condition handlers and the SUPPRESS directive.

10 8 1-1
!|F'i. .u. .

TABLE OF CONTENTS

Section Page

SYNTAX 15: iv

1 CONDITION HANDLING 15:1-1

2 SUPPRESSING CONDITIONS 15:2-1

1081-1 15:iii U F~.

SYNTAX

The syntax conventions used in the JOVIAL (J73) Video Course

and workbook are as follows:

Syntax Meaning Sample Expansions

[some-feature] Brackets indicate an some-feature
optional feature. OR

nothing

(one I other} Braces with a vertical one
bar indicate disjunction- OR
a choice between other
alternatives.

his-one Braces with each feature this-one

that-one' on separate lines indicate OR
Shdisjunction - a choice that-one

between alternatives.

letter ... The sequence I...' letter
indicates one or more letter letter

repetitions of a feature. letter letter letter

(letter) The sequence ".. (letter)
following a comma (or a (letter) (letter)

colon) indicates one or (letter) (letter) (letter)

more repetitions of the
feature separated by
commas (or colons).

K this-one-l Syntax symbols may be this-one + (another)

\ that-one! combined, that-one + (another)

+ another + (another)

1081-1 15:iv M PRUC H

hl J I=== III-.....
7-3

SECTION 1

CONDITION HANDLING

CONDITION HANDLING

A condition is an exceptional event that arises during program

execution. Some conditions indicate errors and other conditions indicate

special events. Two kinds of condition are permitted in JOVIAL (J73/C),

built-in-conditions and programmer-defined-conditions.

The condition handling capability of JOVIAL (J73/C) provides for

the interruption of the normal control sequence should an exceptional

event occur.

BUILD-IN CONDITIONS

Built-in-conditions are conditions that are predefined in JOVIAL

(J73/C). Most of these conditions are associated with language violations
that occur at run-time. Many language violations are detected and

reported by the compiler at compile-time; some violations may only be

detected when the program is running. When such a language violation

occurs, the condition associated with the violation is signalled by the

system.

The built-in-conditions and the reasons for signalling each

condition are given in the following list:

Condition Reason for Signalling

OVERFLOW The value computed in a numeric
formula is not within the range of
values that may be accommodated
in a formula of that size.

ZERODIVIDE The divisor of a formula has the
value 0.

RANGEERROR A numeric value is assigned to an
item that is either outside the
specified or default value-range
for the item.

1081-1 15:1-1

Condition Reason for Signalling

CASEERROR The case-selector of a case-statement
has a value that does not match any
case-index, and the case-statement
does not have a default-option.

VARIANTERROR A name declared in one variant is
referenced when the variant tag
has a value that indicates that
another variant is present.

SUBSCRIPTRANGE A subscript is given that is outside
the range declared for the dimensioned
table.

STRINGRANGE A bit or character is selected that
is outside the length of a bit or
character string.

POINTERDEREFERENCE The pointer used in the dereference
has the value NULL.1" CONVERSION An explicit conversion is applied to a

formula that has a value that may not
be accommodated in the type given
by the conversion.

STORAGE The NEW function is called and the
necessary amount of storage is not
available from heap storage.

NEXTERROR The NEXT function is called with a
parameter that indicates a next or
previous status-constant that is
outside the set of status-constants.

ABORT An abort-statement is executed or the
ABORT condition is signalled. The
ABORT condition is the only built-in
condition that occurs only as a result
of some programmer action.

1081-1 15:1-2

PROGRAMMER-DEFINED CONDITIONS

A programmer may declare a condition in a condition-declaration.

The form is:

CONDITION condition-name

Example

CONDITION NEARFAIL;

CONDITION NEARFAIL, APLUS;

A condition-declaration may appear anywhere a declaration may be given.

THE SIGNAL-STATEMENT

The signal-statement is used to signal the occurrence of a condition.

Programmer-defined-conditions occur only if signalled in this way. Build-

in conditions, with the exception of the ABORT condition, are automatically

signalled by the system when a language violation occurs. Built-in-

conditions, may also be signalled by the signal-statement.

The form of the signal-statement is:

SIGNAL condition ;

A signal-statement indicates an occurrence of the specified condition.

For example:

SIGNAL REDALERT;

This statement signals the occurrence of the condition REDALERT.

CONDITION HANDLERS

A condition occurs either by an implicit signal from the system, if a

language violation occurs, or by an explicit signal in a signal-statement.

Once a condition occurs, it must be resolved. The mechanism for

resolving a condition is called a condition-handler. A condition-handler

provides actions to be taken if a specified set of conditions arise.

1081-1 15:1-3

TI

The form of a condition-handler is:

HANDLER

[(DEFAULT) : statement I

[condition) : statement]

A handler may have either a default option, a sequence of one or

more specified options, or both, as indicated by square brackets. A

handler must have at least one option.

The default option, if present, provides the action to be taken for

any condition that is not provided for explicitly.

For example, given the following handler:

HANDLER

(DEFAULT): RECOVERY;

This handler contains only a default option. It calls procedure

RECOVERY if any condition occurs.

The specified option provides actions for particular conditions. A

condition may be either a programmer-defined condition or a bulit-in-

condition.

For example:

HANDLER

(DEFAULT): RECOVERY

(ZERODIVIDE): ZERODIV = ZERODIV + 1;

(OVERFLOW, FLOATOVERFLOW): ANALYSIS;

(REDALERT) COMMANDCONTROL;

10b,-1 15:1-4

This handler increments the counter ZERODIV if the built-in-

condition ZERODIVIDE occurs, calls procedure ANALYSIS if either

the built-in-condition OVERFLOW or the programmer-defined-condition

FLOATOVERFLOW occurs, calls procedure COMMANDCONTROL if the

programmer-defined-condition REDALERT occurs, and calls procedure

RECOVERY if any other condition occurs.

Program Units

A condition-handler is associated with a program unit. A program

unit is either a compound-statement, a subroutine-body, or a program-body.

The handler is given at the end of a program unit, just before the

terminating END.

The form of a compound-statement with a condition-handler is:

BEGIN

statement ...

I condition-handler]

[label ... I END

The form of a subroutine-body or program-body with a condition-

handler is:

BEGIN

[declaration ...

statement ...

subroutine-definition ...

condition-handler]

[label ... I END

Control passes through a condition-handler only when a condition

occurs.

1081-1 15:1-5 Uu

"---------

Activation of a Condition Handler

When a condition occurs in a program unit, search for a handier

begins. If the condition-handler in the current program unit contains an

option for that condition or a default option, that option is executed.

After it is executed, the program unit that includes the handler is

terminated. If the execution of the option in the condition-handler did

not transfer control, control returns to point following the invocation of

the program unit.

If the program unit does not have a condition-handler or if the

appropriate option is not present in the condition-handler and the

condition-handler does not have a default option, execution of the program

unit is terminated and the condition is propagated out of the program unit.

That is, the program unit that invoked the current program unit is

examined to see if it can handle the signalled condition. The program

unit that invoked a program unit is called its dynamic predecessor. If

the dynamic predecessor contains either an option for the condition or a
default option, the handler option is executed and that program unit

terminated. If it does not, the dynamic predecessor's program unit is

terminated and its dynamic predecessor examined.

This process continues until a handler is found for the condition
or until the program is terminated.

Examples

1) The following example defines a subroutine in which the STRING-
RANGE condition may occur. Subroutine GETCHAR finds the first non-

blank character in a string (STRING), starting from a given position

(INDEX).

1081-1 15:1-6

.

PROC GETCHAR (STRING, INDEX) C;

BEGIN

ITEM STRINC C *;

ITEM INDEX U;

FOR INDEX : INDEX BY 1 WHILE BYTE (STRING, INDEX, 1) -

S I.

BEGIN

END

GET CHAR = BYTE (STRING, INDEX, 1);

END

Given the following item-declaration:

ITEM MESSAGE C 40;

The following function-call produces a STRINGRANGE condition:

CHAR = GETCHAR (MESSAGE, 42);

Any value of INDEX greater than or equal to 40 used in a call to

GETCHAR for the string MESSAGE produces a STRINGRANGE condition.

A STRINGRANGE condition may occur if the input string ends with

a string of blanks. In that case, subroutine GETCHAR is unable to

locate a non-blank character within the limits of the string and runs off

the end of the string.

If every valid string given to GETCHAR is set up to include an

end-of-message character at the end, the STRINGRANGE condition occurs

only in case of an error.

Subroutine GETCHAR does not have a condition-handler, so if the

STRINGRANGE condition occurs, the GETCHAR function is terminated

abnormally and the search begins for a condition-handler.

1081-1 15:1-7 W 6

... - l *- - • ." I .- ,j,

7 -

2) In the following example, GETCHAR is invoked in subroutine

FINDCHAR, which counts the occurrences of a particular character in

a string:

PROC FINDCHAR (STRING, CHAR : COUNT);

BEGIN

ITEM STRING C *;

ITEM CHAR C;

ITEM COUNT U;

COUNT = 0;

FOR INDEX : 0 WHILE INDEX <= BYTESIZE (STRING);

IF GETCHAR (STRING, INDEX) =CHAR;

COUNT = COUNT + 1;

PROC GETCHAR (STRING, INDEX) C;

BEGIN

ITEM STRING C *;

ITEM INDEX U;

FOR INDEX : INDEX BY 1 WHILE BYTE

(STRING, INDEX, 1) ='';

BEGIN

END

GETCHAR = BYTE (STRING, INDEX, 1);

END

HANDLER

(DEFAULT): ID = 10;

END

1081-1 15:1-8

If the string input to FINDCHAR does not have an end-of-message

character at the end, the STRINGRANGE condition may be signalled.

GETCHAR does not have a handler, so the condition is propagated out

to FINDCHAR, which has a handler. This handler has a default option,

so it handles the condition STRINGRANGE. ID, some global variable, is

set to 10 and FINDCHAR terminated. Control returns to the point after

subroutine FINDCHAR was called.

3)
BEGIN "OUTER"

IF QUARTER = 4;

BEGIN "MIDDLE"

FOR I : TO 30;

BEGIN "INNER"

IF INDEX > 42;
SIGNAL SUBSCRIPTRANGE;

' IF INDEX - I = 0;
SIGNAL ZERODIVIDE;

IF GRADE = 'A +1;
SIGNAL APLUS;

HANDLER
(APLUS, NEARFAIL)

END

IiNDLER
(ZERODIVIDE)

END

HANDLER
(SUBSCRIPTRANGE)

END

1081-1 15:1-9

IJ

In this example, if APLUS is signalled in the inner program unit,

the APLUS handler is executed and the inner program unit is terminated.

If ZERODIVIDE is signalled in the inner program unit, the

appropriate handler is not found there, that program unit is terminated,

and the condition is propagated out to the mijdle program unit. The

middle program unit is examined for the appropriate handler; it is found;

it is executed; and the middle program unit is terminated.

If SUBSCRIPTRANGE is signalled in the inner program unit, the

appropriate handler is not found there, that program unit is terminated

and the condition is propagated out to the middle program unit. The

middle program unit is examined for the appropriate handler, one is not

found, that program unit is also terminated and the condition is propagated

out to the outer program unit. The outer program unit is examined for the

appropriate handler; it is found; it is executed; and the outer program

unit is terminated.

SIGNALLING WITHIN HANDLERS

The signal-statement may be used within a handler to indicate the

occurrence of a condition.

For example, a program unit may have a set of handlers; each one

does a certain amount of specific processing and signals a general

handler, to complete the condition processing.

For instance, subroutine FINDCHAR may have a STRINGRANGE
option in the handler, which sets ID to 10 and signals the programmer-

defined-condition BADSTRING.

1081-1 15:1-10

CONDITION BADSTRING;

PROC FINDCHAR (STRING, CHAR COUNT);

BEGIN

ITEM STRING C *;

ITEM CHAR C;

ITEM COUNT U;

COUNT = 0;

FOR INDEX : 0 WHILE INDEX <= BYTESIZE (STRING);

IF GETCHAR (STRING, INDEX) =CHAR;

COUNT = COUNT + 1;

PROC GETCHAR (STRING, INDEX) C;

BEG IN

ITEM STRING C *;

ITEM INDEX U;

FOR INDEX : INDEX BY 1 WHILE BYTE
(STRING, INDEX, 1) ='.

BEGIN

END

GETCHAR = BYTE (STRING, INDEX, 1);

END

HANDLER

(DEFAULT: ID-10;

(STRINGRANGE): BEGIN

ID=10

SIGNAL BADSTRING;

END

END

1081-1 15:1-11 -

-l -i \i

If the condition STRINGRANGE occurs when FINDCHAR is being

executed, it is handled by the handler option for STRINGRANGE associated

with that subroutine. ID is set to 10 and to programmer-defined-condition

BADSTRING is signalled. FINDCHAR is terminated abnormally and the

search for a handler for the BADSTRING condition begins.

SIGNALLING THE RECURRENCE OF A CONDITION

The signal-statement may be used to indicate the recurrence of a

condition. It is a signal-statement without a condition name, as follows:

SIGNAL;

This form of the signal-statement is used only within a handler. It

indicates the recurrence of the condition that caused the initial execution

of the handler. In this way, some local processing may be done before

the condition is propagated to an outer level for more extensive handling.

In the FINDCHAR example, GETCHAR may have a handler for

STRINGRANGE that sets a flag and propagates out the STRINGRANGE

condition.

CONDITION BADSTRING;

PROC FINDCHAR (STRING, CHAR : COUNT);

BEGIN

ITEM STRINC C *;

ITEM CHAR C;

ITEM COUNT U;

COUNT = 0;

FOR INDEX : 0 WHILE INDEX <= BYTESIZE (STRING);

IF GETCHAR (STRING, INDEX) =CHAR;

COUNT = COUNT + 1;

1081-1 15:1-12

PROC GETCHAR (STRING, INDEX) C;

BEGIN

ITEM STRINC C

ITEM INDEX U;

FOR INDEX INDEX BY 1 WHILE BYTE (STRING,
INDEX, 1) =1

GETCHAR = BYTE (STRING. INDEX, 1);

HANDLER

(DEFAULT): BEGIN

CHARFLAG FALSE;

SIGNAL;

END

END

HANDLER

(DEFAULT): ID = 10;

(STRINGRANGE): BEGIN

ID = 10;

SIGNAL BADSTRING;

END

END

If the STRINGRANGE condition occurs within GErAHAR, it is

handled by the handler in GETCHAR, which sets CHARFLAG to FALSE

and signals a reoccurrence of the STRINGRANGE condition.

1081-1 15-1-13

... lJll "= 0-]w cH -

The STRINGRANGE condition signalled in the GETCHAR handler is

propagated out and handled by the STRINGRANGE option in the FINDCHAR

handler, which sets ID to 10 and signals the BADSTRING condition. The

BADSTRING condition is handled by the first explicit handler for that

condition or default handler that is encountered in searching back through

the dynamic predecessors of FINDCHAR.

HANDLERS WITHIN HANDLERS

A handler may include a nested handler. This nested handler is

invoked to handle any conditions that occur while the handler is processing

a signal.

For example:

PROC BUILDCHART;

BEGIN

ITEM TALLY U 10, 0 : 1000;

HANDLER

(ZERODIVIDE): BEGIN

TALLY = TALLY + 1;

HANDLER

(RANGEERROR): ERRTALLY TRUE;

END

END

1081-1 15:1-14

If the ZERODIVIDE condition occurs in subroutine BUILDCHART,

it is processed by the handler in BUILDCHART. During the processing of

the ZERODIVIDE condition, if the RANCEERROR condition occurs, it is

processed by the handler nested within the ZERODIVIDE handler. When

the RANGEERROR condition handling is complete, the ZERODIVIDE handler

is terminated. When the ZERODIVIDE condition handling is complete,

BUILDCHART is terminated.

1081-1 15: 1-15

SECTION 2

SUPPRESSING CONDITIONS

ISIC3

THE !SUPPRESS DIRECTIVE

The !SUPPRESS directive is used to direct the compiler to omit

generating code to check for the existence of the named conditions. This

directive has the form:

! SUPPRESS condition

One or more conditions, separated by commas, may be given. The

SUPPRESS directive must appear before the first executable statement in

a program unit. The !SUPPRESS directive applies to the immediate

program units and nested program units, but not to nested subroutines.

Within the affected program units, the occurrence of the condition named

in a ! SUPPRESS directive is ignored.

The ! SUPPRESS directive may be included in a program to save time

and space after the program has been thoroughly checked and is ready to

be placed in operation.

If a condition designated in a !SUPPRESS directive is a predefined

condition, the ! SUPPRESS directive is not an assertion that the condition

will not arise. The condition may indeed arise during program execution,

but a handler for the condition is not executed. As a result, the program

is invalid and its behavior unpredictable. If a ! SUPPRESS directive

specifies a programmer-defined-condition, a signal-statement for that

condition has no effect.

1081-1 15:2-1

SOFTECH, INC.
Publications Remarks Form

_ _ _ O R D E R NO.I FT081-
The JOVIAL (J73) Workbooks,

TITLE Volumes 1-15 DATED Apri 1981

ERRORS IN PUBLICATION

"' SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be investigated by appropriate technical

personnel and action will be taken as required. Receipt of
all forms will be acknowledged; however, if you require a
detailed reply, check here. Q

FROM: NAME .__ DATE_ _

TITLE ._.

COMPANY__

ADDRESS ,_._,

- ---- . -" --

PLEASE FOLD AND TAPE -
NOTE: U.S. Postal Service will not deliver stapled forms.

PLEASE
PLACE
STAMP
HERE

SOFTECH, INC.

460 Totten Pond Road

Waltham, MA 02154

ATTN: Quality Assurance

soFreCH

MISSION
* Of

Rome Air Development Center
ROA1C ptans and executes tezeoAich, devetopment, .tes&t and
zetected acquisition pbog,&ams i4n suppo~t o6 Command, Cot'iot

* Comunincations and InteLigence (C31) activities. Tech nicat
and enq-Lnee'uing suppozt within axieo6 o4 itechnicat competence
is p'tov.Zded to ESP) PPkogtam OAces (PO.6) and c-thet ESV
etement.6. The p~ncipat technicat missi4on atea a~te
communications, etectkomagnetic guidance and cont't, '5wt-
veitance o 4 gtound and avtoz3pace objects, intettqence data
cottection and handtflng, -in~wmation sy,6tem technotogy,
ionosphe-'ic p'opaqation, so~id sate sciences, rniCAomxve
physiZcs and efectonic)tf-abiLity, maintainabitity and

* cornpatibilaqy.

